Garra Patxi, Morlet-Savary Fabrice, Dietlin Céline, Fouassier Jean-Pierre, Lalevée Jacques
Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.
Université de Strasbourg, 67081 Strasbourg, France.
ACS Omega. 2018 Jun 25;3(6):6827-6832. doi: 10.1021/acsomega.8b00971. eCollection 2018 Jun 30.
Redox free-radical polymerizations have widespread applications but still clearly suffer from poor time control of the reaction. Currently, the workability (delay of the gel time) in redox polymerization after mixing is possible thanks to two main types of inhibitors (radical scavengers): phenols and nitroxides. Out of this trend, we propose in this work an alternative strategy for time delaying of the redox polymerization, which is based on charge-transfer complexes (CTCs). Thanks to iodonium salt complexation, the amine (here 4-,-trimethylaniline) is proposed to be stored in a CTC equilibrium and is slowly released over a period of time (as a result of the consumption of free amines by peroxides). This alternative strategy allowed us to double the gel time (e.g., from 60 to 120 s) while maintaining a high polymerization efficiency (performance comparable to reference nitroxides). More interestingly, the CTCs involved in this retarding strategy are photoresponsive under visible LED@405 nm and can be used on demand as photoinitiators, allowing (i) spectacular increases in polymerization efficiencies (from 50 °C without light to 120 °C under mild irradiation conditions); (ii) drastic reduction of the oxygen-inhibited layer (already 45% C=C conversion at a 2 μm distance from the top surface) compared to the nonirradiated sample (thick inhibited layer of more than 45 μm); and (iii) external control of the redox polymerization gel time due to the possible light activation.
氧化还原自由基聚合具有广泛的应用,但反应的时间控制仍然很差。目前,由于两种主要类型的抑制剂(自由基清除剂):酚类和氮氧化物,氧化还原聚合混合后的可加工性(凝胶时间延迟)成为可能。在这种趋势之外,我们在这项工作中提出了一种氧化还原聚合时间延迟的替代策略,该策略基于电荷转移络合物(CTC)。由于碘鎓盐络合作用,胺(这里是4-,-三甲基苯胺)被提议以CTC平衡状态储存,并在一段时间内缓慢释放(由于过氧化物消耗游离胺的结果)。这种替代策略使我们能够将凝胶时间加倍(例如,从60秒增加到120秒),同时保持高聚合效率(性能与参考氮氧化物相当)。更有趣的是,参与这种延迟策略的CTCs在405nm可见LED光下具有光响应性,可按需用作光引发剂,从而实现:(i)聚合效率显著提高(从无光时的50℃提高到温和辐照条件下的120℃);(ii)与未辐照样品(超过45μm的厚抑制层)相比,氧抑制层大幅减少(在距顶面2μm处C = C转化率已达45%);以及(iii)由于可能的光活化作用,可对外控氧化还原聚合凝胶时间。