Castiñeira Reis Marta, Marín-Luna Marta, Silva López Carlos, Faza Olalla Nieto
Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain.
Departamento de Química Orgánica, Universidade de Vigo, Campus As Lagoas, 32004 Orense, Spain.
ACS Omega. 2018 Jun 28;3(6):7019-7026. doi: 10.1021/acsomega.8b01278. eCollection 2018 Jun 30.
Oxygen atom transfer reactions are receiving increasing attention because they bring about paramount transformations in the current biomass processing industry. Significant efforts have therefore been made lately in the development of efficient and scalable methods to deoxygenate organic compounds. One recent alternative involves the modification of the Cadogan reaction in which a Mo(VI) core catalyzes the reduction of -nitrostyrene derivatives to indoles in the presence of PPh. We have used density functional theory calculations to perform a comprehensive mechanistic study on this transformation, in which we find two clearly defined stages: an associative path from the nitro to the nitroso compound, characterized by the reduction of the catalyst in the first step, and a peculiar mechanism involving oxazaphosphiridine and nitrene intermediates leading to an indole product, where the metal catalyst does not participate.
氧原子转移反应正受到越来越多的关注,因为它们在当前的生物质加工行业中引发了至关重要的转变。因此,最近人们在开发高效且可扩展的有机化合物脱氧方法方面做出了巨大努力。最近的一种替代方法涉及对卡多根反应的改进,其中Mo(VI)核心在PPh存在下催化-硝基苯乙烯衍生物还原为吲哚。我们使用密度泛函理论计算对这种转化进行了全面的机理研究,在此研究中我们发现了两个明确的阶段:从硝基化合物到亚硝基化合物的缔合路径,其特征在于第一步中催化剂的还原;以及一个涉及恶唑磷杂环丁烷和氮烯中间体生成吲哚产物的特殊机理,在此过程中金属催化剂不参与。