Bhalothia Dinesh, Lin Cheng-Yang, Yan Che, Yang Ya-Tang, Chen Tsan-Yao
Institute of Electronics Engineering, Department of Engineering and System Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
ACS Omega. 2019 Jan 11;4(1):971-982. doi: 10.1021/acsomega.8b02896. eCollection 2019 Jan 31.
Hierarchical structures in shell with transition metal underneath is a promising design for high-performance and low-cost heterogeneous nanocatalysts (NCs). Such a design enables the optimum extent of synergetic effects in NC surface. It facilitates intermediate reaction steps and, therefore, boosts activity of NC in oxygen reduction reaction (ORR). In this study, carbon nanotube (CNT)-supported ternary metallic NC comprising Cu-in-Pd nanocrystal and surface decoration of atomic Pt clusters (14 wt %) is synthesized by using the wet chemical reduction method with sequence and reaction time controls. By annealing in H environment (H/N = 9:1, 10 sccm) at 600 K for 2 h, specific activity of Cu@Pd/Pt is substantially improved by ∼2.0-fold as compared to that of the pristine sample and commercial Pt catalysts. By cross-referencing results of electron microscopic, X-ray spectroscopic, and electrochemical analyses, we demonstrated that reduction annealing turns ternary NC into complex of CuPt alloy and Cu Pd alloy. Such a transition preserves Pt and Pd in metallic phases, therefore improving the activity by ∼29% and the stability of NC in an accelerated degradation test (ADT) as compared to those of pristine Cu@Pd/Pt in 36 000 cycles at 0.85 V (vs RHE). This study presents robust H annealing for structure stabilization of NC and systematic characterizations for rationalization of the corresponding mechanisms. These results provide promising scenarios for facilitation of heterogeneous NC in ORR applications.
在壳层下具有过渡金属的分层结构是高性能和低成本异质纳米催化剂(NCs)的一种有前景的设计。这种设计能够在NC表面实现协同效应的最佳程度。它促进了中间反应步骤,因此提高了NC在氧还原反应(ORR)中的活性。在本研究中,通过使用具有顺序和反应时间控制的湿化学还原方法,合成了包含Cu-in-Pd纳米晶体和原子Pt簇(14 wt%)表面修饰的碳纳米管(CNT)负载的三元金属NC。通过在600 K的H环境(H/N = 9:1,10 sccm)中退火2 h,与原始样品和商业Pt催化剂相比,Cu@Pd/Pt的比活性大幅提高了约2.0倍。通过交叉参考电子显微镜、X射线光谱和电化学分析的结果,我们证明还原退火将三元NC转变为CuPt合金和Cu-Pd合金的复合物。这种转变使Pt和Pd保持在金属相中,因此与原始Cu@Pd/Pt在0.85 V(相对于RHE)下进行36000次循环的加速降解试验(ADT)相比,活性提高了约29%,NC的稳定性也得到了提高。本研究提出了用于NC结构稳定化的稳健H退火以及用于相应机制合理化的系统表征。这些结果为促进异质NC在ORR应用中提供了有前景的方案。