Zhang Zhengqiong, Lu Chengqi, Wang Pei, Li Aijing, Zhang Hongbo, Xu Sichuan
College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, China.
College of Mathematics, Yunnan Normal University, Kunming 650500, China.
ACS Omega. 2019 Jul 10;4(7):11938-11948. doi: 10.1021/acsomega.9b00947. eCollection 2019 Jul 31.
Vinblastine and its derivatives used in clinics as antitumor drugs often cause drug resistance and some serious side effects; thus, it is necessary to study new vinblastine analogues with strong anticancer cytotoxicity and low toxicity. We designed a dimer molecule using two vindoline-bonded dimer vindoline (DVB) and studied its interaction with α,β-tubulin through the double-sided adhesive mechanism to explore its anticancer cytotoxicity. In our work, DVB was docked into the interface between α-tubulin and β-tubulin to construct a complex protein structure, and then it was simulated for 100 ns using the molecular dynamics technology to become a stable and refined complex protein structure. Based on such a refined structure, the quantum chemistry at the level of the MP2/6-31G(d,p) method was used to calculate the binding energies for DVB interacting with respective residues. By the obtained binding energies, the active site residues for interaction with DVB were found. Up to 20 active sites of residues within α,β-tubulin interacting with DVB are labeled in β-Asp179, β-Glu207, β-Tyr210, β-Asp211, β-Phe214, β-Pro222, β-Tyr224, and β-Leu227 and α-Asn249, α-Arg308, α-Lys326, α-Asn329, α-Ala333, α-Thr334, α-Lys336, α-Lys338, α-Arg339, α-Ser340, α-Thr349, and α-Phe351. The total binding energy between DVB and α,β-tubulin is about -251.0 kJ·mol. The sampling average force potential (PMF) method was further used to study the dissociation free energy (Δ) along the separation trajectory of α,β-tubulin under the presence of DVB based on the refined structure of DVB with α,β-tubulin. Because of the presence of DVB within the interface between α- and β-tubulin, Δ is 252.3 kJ·mol. In contrast to the absence of DVB, the separation of pure β-tubulin needs a free energy of 196.9 kJ·mol. The data show that the presence of DVB adds more 55.4 kJ·mol of Δ to hinder the normal separation of α,β-tubulin. Compared to vinblastine existing, the free energy required for the separation of α,β-tubulin is 220.5 kJ·mol. Vinblastine and DVB can both be considered through the same double-sided adhesive mechanism to give anticancer cytotoxicity. Because of the presence of DVB, a larger free energy is needed for the separation of α,β-tubulin, which suggests that DVB should have stronger anticancer cytotoxicity than vinblastine and shows that DVB has a broad application prospect.
长春碱及其在临床上用作抗肿瘤药物的衍生物常常会导致耐药性以及一些严重的副作用;因此,有必要研究具有强抗癌细胞毒性和低毒性的新型长春碱类似物。我们设计了一种使用两个长春多灵键合的二聚体长春多灵(DVB)的二聚体分子,并通过双面粘附机制研究其与α,β-微管蛋白的相互作用,以探索其抗癌细胞毒性。在我们的工作中,将DVB对接至α-微管蛋白和β-微管蛋白之间的界面以构建复合蛋白结构,然后使用分子动力学技术对其进行100纳秒的模拟,以形成稳定且精确的复合蛋白结构。基于这样一个精确的结构,采用MP2/6 - 31G(d,p)方法水平的量子化学来计算DVB与各个残基相互作用的结合能。通过所获得的结合能,找到了与DVB相互作用的活性位点残基。在α,β-微管蛋白中与DVB相互作用的多达20个活性位点残基标记于β-天冬氨酸179、β-谷氨酸207、β-酪氨酸210、β-天冬氨酸211、β-苯丙氨酸214、β-脯氨酸222、β-酪氨酸224、β-亮氨酸227以及α-天冬酰胺249、α-精氨酸308、α-赖氨酸326、α-天冬酰胺329、α-丙氨酸333、α-苏氨酸334、α-赖氨酸336、α-赖氨酸338、α-精氨酸339、α-丝氨酸340、α-苏氨酸349以及α-苯丙氨酸351。DVB与α,β-微管蛋白之间的总结合能约为-251.0 kJ·mol。基于DVB与α,β-微管蛋白的精确结构,进一步使用采样平均力势(PMF)方法研究在DVB存在下沿着α,β-微管蛋白分离轨迹的解离自由能(Δ)。由于在α-和β-微管蛋白之间的界面存在DVB,Δ为252.3 kJ·mol。与不存在DVB相比,纯β-微管蛋白的分离需要196.9 kJ·mol的自由能。数据表明,DVB的存在增加了55.4 kJ·mol的Δ以阻碍α,β-微管蛋白的正常分离。与现有长春碱相比,α,β-微管蛋白分离所需的自由能为220.5 kJ·mol。长春碱和DVB都可通过相同的双面粘附机制来产生抗癌细胞毒性。由于DVB的存在,α,β-微管蛋白的分离需要更大的自由能,这表明DVB应具有比长春碱更强的抗癌细胞毒性,并表明DVB具有广阔的应用前景。