Suppr超能文献

黑色素:一种在太阳光下增强能量存储的更环保途径。

Melanin: A Greener Route To Enhance Energy Storage under Solar Light.

作者信息

Xu Ri, Gouda Abdelaziz, Caso Maria Federica, Soavi Francesca, Santato Clara

机构信息

Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada.

Nanofaber Spin-Off at ENEA, Casaccia Research Centre, Via Anguillarese 301, Roma 00123, Italy.

出版信息

ACS Omega. 2019 Jul 16;4(7):12244-12251. doi: 10.1021/acsomega.9b01039. eCollection 2019 Jul 31.

Abstract

The development of technologies integrating solar energy conversion and energy storage functions is critical for limiting the anthropogenic effects on climate change and preventing possible energy shortages related to the increase of the world population. In our work, we explored the possibility to integrate the conversion and storage functions within the same multifunctional biosourced material. We identified the redox-active, quinone-based, melanin pigment, featuring a broadband absorption in the UV-vis region, as the ideal candidate for such an exploration. Electrodes of melanin on carbon paper were investigated for their morphological, optical, and voltammetric characteristics prior to being assembled into symmetric supercapacitors operating in aqueous electrolytes. We observed that, under solar light, the capacity and capacitance of melanin electrodes significantly increase with respect to the dark conditions (by 22 and 39%, respectively). Once in a supercapacitor configuration, besides featuring a Coulombic efficiency close to 100% after 5000 cycles, the capacitance and capacity of the electrodes, rated by the initial values, improve after prolonged illumination, as it is the case for the energy and power density.

摘要

集成太阳能转换和能量存储功能的技术发展对于限制人为因素对气候变化的影响以及防止与世界人口增长相关的潜在能源短缺至关重要。在我们的工作中,我们探索了在同一多功能生物源材料中集成转换和存储功能的可能性。我们确定了基于醌的氧化还原活性黑色素色素,其在紫外-可见区域具有宽带吸收,是进行此类探索的理想候选材料。在将碳纸上的黑色素电极组装成在水性电解质中运行的对称超级电容器之前,对其形态、光学和伏安特性进行了研究。我们观察到,在太阳光下,黑色素电极的容量和电容相对于黑暗条件下显著增加(分别增加22%和39%)。一旦处于超级电容器配置,除了在5000次循环后具有接近100%的库仑效率外,电极的电容和容量(以初始值评定)在长时间光照后会提高,能量和功率密度也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa39/6682057/acfbd75f2082/ao-2019-01039a_0004.jpg

相似文献

1
Melanin: A Greener Route To Enhance Energy Storage under Solar Light.
ACS Omega. 2019 Jul 16;4(7):12244-12251. doi: 10.1021/acsomega.9b01039. eCollection 2019 Jul 31.
2
Carbon dot-modified mesoporous carbon as a supercapacitor with enhanced light-assisted capacitance.
Nanoscale. 2020 Sep 14;12(34):17925-17930. doi: 10.1039/d0nr05532h. Epub 2020 Aug 26.
3
Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor.
ACS Appl Mater Interfaces. 2017 Dec 27;9(51):44429-44440. doi: 10.1021/acsami.7b11849. Epub 2017 Dec 15.
4
Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage.
ACS Appl Mater Interfaces. 2017 Jul 12;9(27):22361-22368. doi: 10.1021/acsami.7b01471. Epub 2017 Jun 27.
6
Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4233-8. doi: 10.1073/pnas.1420398112. Epub 2015 Mar 23.
7
Flexible polyester cellulose paper supercapacitor with a gel electrolyte.
Chemphyschem. 2013 Nov 11;14(16):3822-6. doi: 10.1002/cphc.201300622. Epub 2013 Oct 23.
8
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
Nanoscale. 2013 Feb 7;5(3):1067-73. doi: 10.1039/c2nr33136e. Epub 2012 Dec 20.
10
Bifunctional Photo-Supercapacitor with a New Architecture Converts and Stores Solar Energy as Charge.
ACS Appl Mater Interfaces. 2018 Oct 24;10(42):35932-35945. doi: 10.1021/acsami.8b11399. Epub 2018 Oct 9.

引用本文的文献

1
Functionalized melanin for enhanced energy storage in aqueous and ionic liquid electrolytes.
Commun Chem. 2025 Aug 14;8(1):248. doi: 10.1038/s42004-025-01643-7.
3
Melanins as Sustainable Resources for Advanced Biotechnological Applications.
Glob Chall. 2020 Nov 25;5(2):2000102. doi: 10.1002/gch2.202000102. eCollection 2021 Feb.
4
Probing the heterogeneous structure of eumelanin using ultrafast vibrational fingerprinting.
Nat Commun. 2020 Sep 11;11(1):4569. doi: 10.1038/s41467-020-18393-w.

本文引用的文献

1
Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage.
Nano Lett. 2017 Dec 13;17(12):7897-7907. doi: 10.1021/acs.nanolett.7b04242. Epub 2017 Nov 30.
2
Universal quinone electrodes for long cycle life aqueous rechargeable batteries.
Nat Mater. 2017 Aug;16(8):841-848. doi: 10.1038/nmat4919. Epub 2017 Jun 19.
3
A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries.
Angew Chem Int Ed Engl. 2016 Aug 26;55(36):10662-6. doi: 10.1002/anie.201604519. Epub 2016 Aug 3.
4
An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.
Nature. 2015 Nov 5;527(7576):78-81. doi: 10.1038/nature15746. Epub 2015 Oct 21.
5
Alkaline quinone flow battery.
Science. 2015 Sep 25;349(6255):1529-32. doi: 10.1126/science.aab3033.
6
Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells.
Adv Mater. 2014 Oct;26(38):6572-9. doi: 10.1002/adma.201402295. Epub 2014 Aug 25.
7
A stable polyaniline-benzoquinone-hydroquinone supercapacitor.
Adv Mater. 2014 Aug 13;26(30):5095-100. doi: 10.1002/adma.201400966. Epub 2014 Jun 13.
9
A metal-free organic-inorganic aqueous flow battery.
Nature. 2014 Jan 9;505(7482):195-8. doi: 10.1038/nature12909.
10
Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20912-7. doi: 10.1073/pnas.1314345110. Epub 2013 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验