Suppr超能文献

一种使用非腐蚀性、安全且低成本材料的水基聚合物氧化还原流电池。

An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.

机构信息

Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.

Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany.

出版信息

Nature. 2015 Nov 5;527(7576):78-81. doi: 10.1038/nature15746. Epub 2015 Oct 21.

Abstract

For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

摘要

为了使太阳能、风能和水能等可再生能源在未来的电网中得到有效利用,有必要开发灵活和可扩展的储能解决方案,以缓解输出波动。氧化还原液流电池(RFB)最早于 20 世纪 40 年代建成,被认为是一种很有前途的大规模储能技术。已经研究了有限数量的氧化还原活性材料——主要是金属盐、腐蚀性卤素和低摩尔质量的有机化合物——作为活性材料,只有少数膜材料,如 Nafion,被认为是 RFB 的候选材料。然而,对于旨在用于家庭和大规模使用的系统,必须考虑安全性和成本以及能量密度和容量,特别是考虑到长期获得金属资源的情况,这限制了锂离子和钒基 RFB 的发展。在这里,我们描述了一种经济实惠、安全且可扩展的电池系统,该系统使用有机聚合物作为电荷存储材料,与廉价的透析膜结合使用,通过保留非金属、活性(大分子)物质来分离阳极和阴极,以及含有氯化钠的水溶液作为电解质。这种基于水和聚合物的 RFB 的能量密度为每升 10 瓦时,电流密度高达每平方厘米 100 毫安,并且具有稳定的长期循环能力。我们提出的基于聚合物的 RFB 采用环保的氯化钠溶液和廉价、市售的过滤膜,而不是腐蚀性很强的酸性电解质和昂贵的膜材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验