Suppr超能文献

基于灰色关联分析结合BP神经网络与蝙蝠算法的复合材料预浸带缠绕工艺建模与优化

Modeling and Optimizing the Composite Prepreg Tape Winding Process Based on Grey Relational Analysis Coupled with BP Neural Network and Bat Algorithm.

作者信息

Deng Bo, Shi Yaoyao

机构信息

The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, China.

出版信息

Nanoscale Res Lett. 2019 Aug 28;14(1):296. doi: 10.1186/s11671-019-3118-4.

Abstract

As a significant way to manufacture revolving body composite, the composite prepreg tape winding technology is widely applied to the domain of aerospace motor manufacture. Processing parameters, including heating temperature, tape tension, roller pressure, and winding velocity, have considerable effects on the void content and tensile strength of winding products. This paper was devoted to studying the influence of process parameters on the performances of winding products including both void content and tensile strength and trying to provide the optimal parameters combination for the objectives of lower void content and higher tensile strength. In the experiments, tensile strength and void content were selected as the mechanical property and physical performance of winding products to be tested, respectively. An integrated approach by uniting the Grey relational analysis, backpropagation neural network, and bat algorithm was presented to search the optimal technology parameters for composite tape winding process. Then, the composite tape winding process model was provided by backpropagation neural network utilizing the results of Grey relational analysis. According to the bat algorithm, the optimal parameter combination was heating temperature with 73.8 °C, tape tension with 291.2 N, roller pressure with 1804.1 N, and winding velocity with 9.1 rpm. The value of tensile strength increased from 1215.31 to 1329.62 MPa. Meanwhile, the value of void content decreased from 0.15 to 0.137%. At last, the developed method was verified to be useful for optimizing the composite tape winding process.

摘要

作为制造回转体复合材料的一种重要方法,复合材料预浸带缠绕技术在航空航天发动机制造领域得到了广泛应用。加工参数,包括加热温度、带材张力、滚筒压力和缠绕速度,对缠绕产品的孔隙率和拉伸强度有显著影响。本文致力于研究工艺参数对缠绕产品性能(包括孔隙率和拉伸强度)的影响,并试图为降低孔隙率和提高拉伸强度的目标提供最佳参数组合。在实验中,分别选择拉伸强度和孔隙率作为缠绕产品的力学性能和物理性能进行测试。提出了一种结合灰色关联分析、反向传播神经网络和蝙蝠算法的综合方法,以搜索复合材料带缠绕工艺的最佳工艺参数。然后,利用灰色关联分析的结果,通过反向传播神经网络建立了复合材料带缠绕工艺模型。根据蝙蝠算法,最佳参数组合为加热温度73.8℃、带材张力291.2N、滚筒压力1804.1N和缠绕速度9.1rpm。拉伸强度值从1215.31MPa提高到1329.62MPa。同时,孔隙率值从0.15%降低到0.137%。最后,验证了所提出的方法对优化复合材料带缠绕工艺是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1702/6713783/76ad1be8ea38/11671_2019_3118_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验