Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark.
Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.
Biochim Biophys Acta Biomembr. 2019 Nov 1;1861(11):183026. doi: 10.1016/j.bbamem.2019.07.014. Epub 2019 Aug 26.
We investigated melting transitions in native biological membranes containing their membrane proteins. The membranes originated from E. coli, B. subtilis, lung surfactant and nerve tissue from the spinal cord of several mammals. For some preparations, we studied the pressure, pH and ionic strength dependence of the transition. For porcine spine, we compared the transition of the native membrane to that of the extracted lipids. All preparations displayed melting transitions of 10-20° below physiological or growth temperature, independent of the organism of origin and the respective cell type. We found that the position of the transitions in E. coli membranes depends on the growth temperature. We discuss these findings in the context of the thermodynamic theory of membrane fluctuations close to transition that predicts largely altered elastic constants, an increase in fluctuation lifetime and in membrane permeability. We also discuss how to distinguish lipid melting from protein unfolding transitions. Since the feature of a transition slightly below physiological temperature is conserved even when growth conditions change, we conclude that the transitions are likely to be of major biological importance for the survival and the function of the cell.
我们研究了含有膜蛋白的天然生物膜的熔融转变。这些膜来源于大肠杆菌、枯草芽孢杆菌、肺表面活性剂和来自几种哺乳动物脊髓的神经组织。对于一些制剂,我们研究了转变对压力、pH 值和离子强度的依赖性。对于猪脊柱,我们比较了天然膜与提取脂质的转变。所有制剂都显示出低于生理或生长温度 10-20°C 的熔融转变,而与起源生物体和各自的细胞类型无关。我们发现大肠杆菌膜中转变的位置取决于生长温度。我们根据接近转变的膜涨落的热力学理论讨论了这些发现,该理论预测弹性常数会发生很大变化,涨落寿命和膜渗透性会增加。我们还讨论了如何区分脂质熔融和蛋白质展开转变。由于即使在生长条件发生变化时,低于生理温度的转变特征也能保持不变,因此我们得出结论,这些转变对于细胞的生存和功能可能具有重要的生物学意义。