Suppr超能文献

一种模仿线粒体内膜生物物理特性的极简模型脂质系统。

A Minimalist Model Lipid System Mimicking the Biophysical Properties of 's Inner Membrane.

作者信息

Tormena Nicolo, Pilizota Teuta, Voïtchovsky Kislon

机构信息

Physics Department, Durham University, South Road, Durham DH1 3LE, U.K.

School of Biological Sciences and Centre for Engineering Biology, The University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K.

出版信息

Langmuir. 2025 May 20;41(19):12301-12310. doi: 10.1021/acs.langmuir.5c01138. Epub 2025 May 7.

Abstract

Biological membranes are essential for the development and survival of organisms. They can be highly complex, usually comprising a variety of lipids, proteins, and other biomolecules organized around a lipid bilayer structure. This complexity makes studying specific features of biological membranes difficult, with many research studies relying on simplified models, such as artificial vesicles or supported lipid bilayers. Here, we search for a minimal, lipid-only model system of the inner membrane. We aim to retain the main lipidomic components in their native ratio while mimicking the membrane's thermal and mechanical properties. Based on previous studies, we identify 18 potential model systems reflecting key aspects of the known lipidomic composition and progressively narrow down our selection based on the systems' phase transition temperature and mechanical properties. We identify three ternary model systems able to form stable bilayers that can be made of the commercially available synthetic lipids 16:0-18:1 phosphatidylethanolamine (POPE), 16:0-18:1 phosphatidylglycerol (POPG), and 16:0-18:1 cardiolipin (CL). We anticipate our results to be of interest for future studies making use of models, for example, investigating membrane proteins' function or macromolecule-membrane interactions.

摘要

生物膜对于生物体的发育和生存至关重要。它们可能高度复杂,通常由围绕脂质双层结构组织的多种脂质、蛋白质和其他生物分子组成。这种复杂性使得研究生物膜的特定特征变得困难,许多研究依赖于简化模型,如人工囊泡或支撑脂质双层。在这里,我们寻找内膜的一种仅含脂质的最小模型系统。我们的目标是在模拟膜的热学和力学性质的同时,保持主要脂质成分的天然比例。基于先前的研究,我们确定了18种潜在的模型系统,这些系统反映了已知脂质组成的关键方面,并根据系统的相变温度和力学性质逐步缩小我们的选择范围。我们确定了三种能够形成稳定双层的三元模型系统,它们可以由市售的合成脂质16:0 - 18:1磷脂酰乙醇胺(POPE)、16:0 - 18:1磷脂酰甘油(POPG)和16:0 - 18:1心磷脂(CL)制成。我们预计我们的结果将对未来利用这些模型的研究感兴趣,例如,研究膜蛋白的功能或大分子与膜的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21f0/12100707/def9160189fa/la5c01138_0001.jpg

相似文献

1
A Minimalist Model Lipid System Mimicking the Biophysical Properties of 's Inner Membrane.
Langmuir. 2025 May 20;41(19):12301-12310. doi: 10.1021/acs.langmuir.5c01138. Epub 2025 May 7.
3
Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane.
Biophys J. 2005 Feb;88(2):1091-103. doi: 10.1529/biophysj.104.048835. Epub 2004 Nov 19.
4
Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane-Langmuir monolayer approach.
Biochim Biophys Acta. 2015 Feb;1848(2):469-76. doi: 10.1016/j.bbamem.2014.10.024. Epub 2014 Oct 27.
5
Roles of histidine charge and cardiolipin in membrane disruption by antimicrobial peptides Gaduscidin-1 and Gaduscidin-2.
Biochim Biophys Acta Biomembr. 2020 Nov 1;1862(11):183444. doi: 10.1016/j.bbamem.2020.183444. Epub 2020 Aug 19.
6
Formation and Characterization of Supported Lipid Bilayers Composed of Hydrogenated and Deuterated Escherichia coli Lipids.
PLoS One. 2015 Dec 11;10(12):e0144671. doi: 10.1371/journal.pone.0144671. eCollection 2015.
7
The influence of cardiolipin on phosphatidylglycerol/phosphatidylethanolamine monolayers--studies on ternary films imitating bacterial membranes.
Colloids Surf B Biointerfaces. 2013 Jun 1;106:217-23. doi: 10.1016/j.colsurfb.2013.01.053. Epub 2013 Feb 1.
8
9
Physical states and thermodynamic properties of model gram-negative bacterial inner membranes.
Chem Phys Lipids. 2019 Jan;218:57-64. doi: 10.1016/j.chemphyslip.2018.12.003. Epub 2018 Dec 6.
10
Lactose permease lipid selectivity using Förster resonance energy transfer.
Biochim Biophys Acta. 2010 Sep;1798(9):1707-13. doi: 10.1016/j.bbamem.2010.05.012. Epub 2010 May 19.

本文引用的文献

1
Examining the Biophysical Properties of the Inner Membrane of Gram-Negative ESKAPE Pathogens.
J Chem Inf Model. 2025 Feb 10;65(3):1453-1464. doi: 10.1021/acs.jcim.4c01457. Epub 2025 Jan 28.
2
Bacterial lipid biophysics and membrane organization.
Curr Opin Microbiol. 2023 Aug;74:102315. doi: 10.1016/j.mib.2023.102315. Epub 2023 Apr 13.
4
How Do Cyclopropane Fatty Acids Protect the Cell Membrane of in Cold Shock?
J Phys Chem B. 2023 Feb 23;127(7):1607-1617. doi: 10.1021/acs.jpcb.3c00541. Epub 2023 Feb 15.
5
The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes.
Biochim Biophys Acta Biomembr. 2023 Feb;1865(2):184084. doi: 10.1016/j.bbamem.2022.184084. Epub 2022 Nov 8.
7
Coordination of gene expression with cell size enables to efficiently maintain motility across conditions.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2110342119. doi: 10.1073/pnas.2110342119. Epub 2022 Sep 6.
8
Model architectures for bacterial membranes.
Biophys Rev. 2022 Mar 7;14(1):111-143. doi: 10.1007/s12551-021-00913-7. eCollection 2022 Feb.
9
Leaflet Asymmetry Modeling in the Lipid Composition of Cytoplasmic Membranes.
J Phys Chem B. 2022 Jan 13;126(1):184-196. doi: 10.1021/acs.jpcb.1c07332. Epub 2021 Dec 28.
10
Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface.
Int J Mol Sci. 2021 Oct 26;22(21):11566. doi: 10.3390/ijms222111566.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验