Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, China.
College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 200120, China.
Comput Methods Programs Biomed. 2019 Dec;182:105041. doi: 10.1016/j.cmpb.2019.105041. Epub 2019 Aug 19.
A gap still exists in the hemodynamic effect of intra-aortic balloon pump (IABP), venoarterial extracorporeal membrane oxygenation (VA-ECMO), and VA-ECMO plus IABP on the blood perfusion of the coronary artery, brain, and lower limb; the relation between heart flow and ECMO flow; and the wall stress of vessels.
A finite-element model of the aorta, ECMO, and IABP was proposed to calculate the mechanical response via fluid-structure interaction. Heart failure (HF), IABP, ECMO, and ECMO plus IABP were utilized to study the effect of support models.
For the pressure curve, VA-ECMO weakened the dicrotic notch of pressure compared with HF and the pulsatile index (0.494 vs. 0.706 vs. 0.471 vs. 0.613). IABP, ECMO, and ECMO plus IABP increased the perfusion of the coronary, brain, and renal artery compared with HF. However, ECMO and ECMO plus IABP clearly reduced the blood flow of the left arteria femoralis compared to that of the right arteria femoralis (ECMO: 194.04 vs. 730.80 mL/min; ECMO plus IABP: 342.15 vs. 947.22 mL/min). In addition, the flow of ECMO accessed the renal artery more than the left ventricular flow. Greater ventricular flow perfused to the renal artery at a diastolic period for ECMO plus IABP, especially at the time points of 2.192 s and 2.304 s. Compared to the velocity distribution with ECMO, the flow of the right arteria femoralis was increased in the process of IABP-on. According to these four cases, the stress of the vascular wall was increased for ECMO support at the systolic period. The peak wall stress of ECMO is increased by 20% at 1.68 s.
ECMO plus IABP is more conducive to the blood supply than other cases from the result of numerical simulation. The location of blood intersection was generated in the region of the renal artery, which is estimated carefully.
主动脉内球囊反搏(IABP)、静脉-动脉体外膜肺氧合(VA-ECMO)和 VA-ECMO+IABP 对冠状动脉、脑部和下肢的血液灌注、心流与 ECMO 流量之间的关系以及血管壁的应力存在差异。
提出了一种主动脉、ECMO 和 IABP 的有限元模型,通过流固耦合计算力学响应。利用心力衰竭(HF)、IABP、ECMO 和 ECMO+IABP 来研究支持模型的效果。
在压力曲线上,VA-ECMO 较 HF 减弱了压力的降中切迹(0.494 比 0.706 比 0.471 比 0.613)。IABP、ECMO 和 ECMO+IABP 与 HF 相比增加了冠状动脉、脑部和肾动脉的灌注。然而,ECMO 和 ECMO+IABP 明显降低了左股动脉的血流(ECMO:194.04 比 730.80 mL/min;ECMO+IABP:342.15 比 947.22 mL/min)。此外,ECMO 的流量比左心室的流量更容易进入肾动脉。对于 ECMO+IABP,舒张期更多的心室流量灌注到肾动脉,特别是在 2.192 s 和 2.304 s 时。与 ECMO 的速度分布相比,IABP 开启过程中右股动脉的血流增加。根据这四种情况,ECMO 支持时血管壁的应力在收缩期增加。ECMO 在 1.68 s 时的峰值壁应力增加了 20%。
从数值模拟的结果来看,ECMO+IABP 比其他情况更有利于血液供应。在肾动脉区域生成了血液交叉的位置,需要仔细估计。