Medical Oncology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain.
Molecular Oncology Laboratory, Biomedical Sciences Research Institute, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain.
Clin Chem Lab Med. 2020 Jan 28;58(2):306-313. doi: 10.1515/cclm-2019-0745.
Background Non-small cell lung cancer (NSCLC) patients benefit from targeted therapies both in first- and second-line treatment. Nevertheless, molecular profiling of lung cancer tumors after first disease progression is seldom performed. The analysis of circulating tumor DNA (ctDNA) enables not only non-invasive biomarker testing but also monitoring tumor response to treatment. Digital PCR (dPCR), although a robust approach, only enables the analysis of a limited number of mutations. Next-generation sequencing (NGS), on the other hand, enables the analysis of significantly greater numbers of mutations. Methods A total of 54 circulating free DNA (cfDNA) samples from 52 NSCLC patients and two healthy donors were analyzed by NGS using the Oncomine™ Lung cfDNA Assay kit and dPCR. Results Lin's concordance correlation coefficient and Pearson's correlation coefficient between mutant allele frequencies (MAFs) assessed by NGS and dPCR revealed a positive and linear relationship between the two data sets (ρc = 0.986; 95% confidence interval [CI] = 0.975-0.991; r = 0.987; p < 0.0001, respectively), indicating an excellent concordance between both measurements. Similarly, the agreement between NGS and dPCR for the detection of the resistance mutation p.T790M was almost perfect (K = 0.81; 95% CI = 0.62-0.99), with an excellent correlation in terms of MAFs (ρc = 0.991; 95% CI = 0.981-0.992 and Pearson's r = 0.998; p < 0.0001). Importantly, cfDNA sequencing was successful using as low as 10 ng cfDNA input. Conclusions MAFs assessed by NGS were highly correlated with MAFs assessed by dPCR, demonstrating that NGS is a robust technique for ctDNA quantification using clinical samples, thereby allowing for dynamic genomic surveillance in the era of precision medicine.
非小细胞肺癌(NSCLC)患者在一线和二线治疗中均受益于靶向治疗。然而,在首次疾病进展后很少对肺癌肿瘤进行分子谱分析。循环肿瘤 DNA(ctDNA)的分析不仅可以进行非侵入性生物标志物检测,还可以监测肿瘤对治疗的反应。数字 PCR(dPCR)虽然是一种强大的方法,但只能分析有限数量的突变。另一方面,下一代测序(NGS)可以分析数量显著更多的突变。
对 52 例 NSCLC 患者和 2 例健康供体的 54 份循环游离 DNA(cfDNA)样本进行了 NGS 分析,使用了 Oncomine™ Lung cfDNA Assay 试剂盒和 dPCR。
通过 NGS 和 dPCR 评估的突变等位基因频率(MAF)之间的 Lin 一致性相关系数和 Pearson 相关系数显示,两个数据集之间存在正线性关系(ρc=0.986;95%置信区间 [CI] = 0.975-0.991;r=0.987;p<0.0001),表明两种测量方法之间具有极好的一致性。同样,NGS 和 dPCR 检测耐药突变 p.T790M 的一致性几乎是完美的(K=0.81;95% CI=0.62-0.99),并且在 MAF 方面具有极好的相关性(ρc=0.991;95% CI=0.981-0.992 和 Pearson's r=0.998;p<0.0001)。重要的是,使用低至 10 ng cfDNA 输入即可成功进行 cfDNA 测序。
通过 NGS 评估的 MAF 与通过 dPCR 评估的 MAF 高度相关,这表明 NGS 是一种用于 ctDNA 定量的强大技术,可在精准医学时代实现动态基因组监测。