Suppr超能文献

基于不可靠结局测量指标的群组和多点随机试验的优化设计。

Optimal Design of Cluster- and Multisite-Randomized Studies Using Fallible Outcome Measures.

机构信息

Quantitative and Mixed Methods Research Methodologies Program, University of Cincinnati, Cincinnati, OH, USA.

出版信息

Eval Rev. 2019 Jun-Aug;43(3-4):189-225. doi: 10.1177/0193841X19870878. Epub 2019 Aug 30.

Abstract

BACKGROUND

Evaluation studies frequently draw on fallible outcomes that contain significant measurement error. Ignoring outcome measurement error in the planning stages can undermine the sufficiency and efficiency of an otherwise well-designed study and can further constrain the evidence studies bring to bear on the effectiveness of programs.

OBJECTIVES

We develop simple formulas to adjust statistical power, minimum detectable effect (MDE), and optimal sample allocation formulas for two-level cluster- and multisite-randomized designs when the outcome is subject to measurement error.

RESULTS

The resulting adjusted formulas suggest that outcome measurement error typically amplifies treatment effect uncertainty, reduces power, increases the MDE, and undermines the efficiency of conventional optimal sampling schemes. Therefore, achieving adequate power for a given effect size will typically demand increased sample sizes when considering fallible outcomes, while maintaining design efficiency will require increasing portions of a budget be applied toward sampling a larger number of individuals within clusters. We illustrate evaluation planning with the new formulas while comparing them to conventional formulas using hypothetical examples based on recent empirical studies. To encourage adoption of the new formulas, we implement them in the package and in the software.

摘要

背景

评估研究经常依赖存在重大测量误差的不可靠结果。在规划阶段忽略结果测量误差会降低原本设计良好的研究的充分性和效率,并进一步限制研究对项目有效性的证据产生的影响。

目的

当结果存在测量误差时,我们开发了简单的公式来调整两级聚类和多站点随机设计的统计功效、最小可检测效应 (MDE) 和最优样本分配公式。

结果

所得调整公式表明,通常情况下,结果测量误差会放大治疗效果的不确定性,降低功效,增加 MDE,并降低传统最优抽样方案的效率。因此,当考虑不可靠的结果时,为给定的效果大小实现足够的功效通常需要增加样本量,而保持设计效率则需要将预算的更大部分用于在聚类中抽样更多的个体。我们使用基于最近实证研究的假设示例,通过新公式来说明评估计划,并将其与传统公式进行比较。为了鼓励采用新公式,我们在 包和 软件中实现了它们。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验