Particle Technology Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu 215123, PR China; Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia.
Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia.
J Colloid Interface Sci. 2019 Nov 15;556:529-540. doi: 10.1016/j.jcis.2019.08.084. Epub 2019 Aug 24.
The fast and scalable spray-drying-assisted evaporation-induced self-assembly (EISA) synthesis of hierarchically porous SBA-15-type silica microparticles from a water-based system is demonstrated. The SBA-15-type silica microparticles has bowl-like shapes, uniform micro-sizes (∼90 µm), large ordered mesopores (∼9.5 nm), hierarchical meso-/macropores (20-100 nm) and open surfaces. In the synthesis, soft- and hard-templating approaches are combined in a single rapid drying process with a non-ionic tri-block copolymer (F127) and a water-insoluble polymer colloid (Eudragit RS, 120 nm) as the co-templates. The RS polymer colloid plays three important roles. First, the RS nanoparticles can be partially dissolved by in-situ generated ethanol to form RS polymer chains. The RS chains swell and modulate the hydrophilic-hydrophobic balance of F127 micelles to allow the formation of an ordered mesostructure with large mesopore sizes. Without RS, only worm-like mesostructure with much smaller mesopore sizes can be formed. Second, part of the RS nanoparticles plays a role in templating the hierarchical pores distributed throughout the microparticles. Third, part of the RS polymer forms surface "skins" and "bumps", which can be removed by calcination to enable a more open surface structure to overcome the low pore accessibility issue of spray-dried porous microparticles. The obtained materials have high surface areas (315-510 m g) and large pore volumes (0.64-1.0 cm g), which are dependent on RS concentration, HCl concentration, silica precursor hydrolysis time and drying temperature. The representative materials are promising for the adsorption of lysozyme. The adsorption occurs at a >three-fold faster rate, in a five-fold larger capacity (an increase from 20 to 100 mg g) and without pore blockage compared with the adsorption of lysozyme onto spray-dried microparticles of similar physicochemical properties obtained without the use of RS.
本文展示了一种从水基体系出发,通过快速、可扩展的喷雾干燥辅助蒸发诱导自组装(EISA)合成具有分级多孔结构的 SBA-15 型硅质微球。所制备的 SBA-15 型硅质微球呈碗状形貌,具有均匀的微尺寸(90μm)、大的有序介孔(9.5nm)、分级介/大孔(20-100nm)和开放表面。在合成过程中,软模板和硬模板方法在单个快速干燥过程中结合使用,其中使用非离子型三嵌段共聚物(F127)和不溶于水的聚合物胶体(Eudragit RS,120nm)作为共模板。RS 聚合物胶体发挥了三个重要作用。首先,RS 纳米颗粒可以部分溶解于原位生成的乙醇中,形成 RS 聚合物链。RS 链溶胀并调节 F127 胶束的亲水-亲油平衡,允许形成具有大介孔尺寸的有序介孔结构。如果没有 RS,则只能形成具有更小介孔尺寸的蠕虫状介孔结构。其次,一部分 RS 纳米颗粒充当了分布在整个微球中的分级孔的模板。第三,一部分 RS 聚合物形成表面“皮”和“凸块”,它们可以通过煅烧去除,从而形成更开放的表面结构,以克服喷雾干燥多孔微球的低孔可及性问题。所获得的材料具有高的比表面积(315-510m²/g)和大的孔体积(0.64-1.0cm³/g),这取决于 RS 浓度、HCl 浓度、硅源水解时间和干燥温度。代表性的材料在溶菌酶吸附方面具有很大的应用潜力。与不使用 RS 获得的具有相似物理化学性质的喷雾干燥微球相比,吸附发生的速率快了三倍,容量提高了五倍(从 20mg/g 提高到 100mg/g),并且没有孔堵塞。