Dedan Kimathi University of Technology, Department of Information Technology, Nyeri, Kenya.
Centre National de la Recherche Scientifique (CNRS), UMR 7357 ICube Lab, University of Strasbourg, France.
Neural Netw. 2019 Nov;119:273-285. doi: 10.1016/j.neunet.2019.08.014. Epub 2019 Aug 17.
The quantization error in a fixed-size Self-Organizing Map (SOM) with unsupervised winner-take-all learning has previously been used successfully to detect, in minimal computation time, highly meaningful changes across images in medical time series and in time series of satellite images. Here, the functional properties of the quantization error in SOM are explored further to show that the metric is capable of reliably discriminating between the finest differences in local contrast intensities and contrast signs. While this capability of the QE is akin to functional characteristics of a specific class of retinal ganglion cells (the so-called Y-cells) in the visual systems of the primate and the cat, the sensitivity of the QE surpasses the capacity limits of human visual detection. Here, the quantization error in the SOM is found to reliably signal changes in contrast or colour when contrast information is removed from or added to the image, but not when the amount and relative weight of contrast information is constant and only the local spatial position of contrast elements in the pattern changes. While the RGB Mean reflects coarser changes in colour or contrast well enough, the SOM-QE is shown to outperform the RGB Mean in the detection of single-pixel changes in images with up to five million pixels. This could have important implications in the context of unsupervised image learning and computational building block approaches to large sets of image data (big data), including deep learning blocks, and automatic detection of contrast change at the nanoscale in Transmission or Scanning Electron Micrographs (TEM, SEM), or at the subpixel level in multispectral and hyper-spectral imaging data.
使用无监督胜者全取学习的固定大小自组织映射 (SOM) 的量化误差以前曾成功用于在医学时间序列和卫星图像时间序列中的图像中以最小的计算时间检测到非常有意义的变化。在这里,进一步探索了 SOM 中量化误差的功能特性,以表明该度量标准能够可靠地区分局部对比度强度和对比度符号的最细微差异。虽然这种 QE 的功能类似于灵长类动物和猫的视觉系统中特定一类视网膜神经节细胞(所谓的 Y 细胞)的功能特征,但 QE 的灵敏度超过了人类视觉检测的能力极限。在这里,发现 SOM 中的量化误差在从图像中去除或添加对比度信息时可靠地发出对比度或颜色变化的信号,但在对比度信息的数量和相对权重保持不变且仅图案中对比度元素的局部空间位置发生变化时则不会。虽然 RGB Mean 足以很好地反映颜色或对比度的较粗变化,但 SOM-QE 被证明在检测图像中高达五百万像素的单个像素变化时表现优于 RGB Mean。这对于无监督图像学习和计算构建块方法对大型图像数据集(大数据),包括深度学习块,以及在透射或扫描电子显微镜 (TEM、SEM) 中的纳米尺度对比度变化或在多光谱和超光谱成像数据中的亚像素水平自动检测对比度变化具有重要意义。