Xu Jing, Khoury Nathalie, Jackson Charles W, Escobar Iris, Stegelmann Samuel D, Dave Kunjan R, Perez-Pinzon Miguel A
Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA.
Transl Stroke Res. 2020 Jun;11(3):418-432. doi: 10.1007/s12975-019-00729-4. Epub 2019 Aug 31.
The preservation of mitochondrial function is a major protective strategy for cerebral ischemic injuries. Previously, our laboratory demonstrated that protein kinase C epsilon (PKCε) promotes the synthesis of mitochondrial nicotinamide adenine dinucleotide (NAD). NAD along with its reducing equivalent, NADH, is an essential co-factor needed for energy production from glycolysis and oxidative phosphorylation. Yet, NAD/NADH are impermeable to the inner mitochondrial membrane and their import into the mitochondria requires the activity of specific shuttles. The most important neuronal NAD/NADH shuttle is the malate-aspartate shuttle (MAS). The MAS has been implicated in synaptic function and is potentially dysregulated during cerebral ischemia. The aim of this study was to determine if metabolic changes induced by PKCε preconditioning involved regulation of the MAS. Using primary neuronal cultures, we observed that the activation of PKCε enhanced mitochondrial respiration and glycolysis in vitro. Conversely, inhibition of the MAS resulted in decreased oxidative phosphorylation and glycolytic capacity. We further demonstrated that activation of PKCε increased the phosphorylation of key components of the MAS in rat brain synaptosomal fractions. Additionally, PKCε increased the enzyme activity of glutamic oxaloacetic transaminase 2 (GOT2), an effect that was dependent on the import of PKCε into the mitochondria and phosphorylation of GOT2. Furthermore, PKCε activation was able to rescue decreased GOT2 activity induced by ischemia. These findings reveal novel protective targets and mechanisms against ischemic injury, which involves PKCε-mediated phosphorylation and activation of GOT2 in the MAS.
线粒体功能的维持是脑缺血损伤的主要保护策略。此前,我们实验室证明蛋白激酶Cε(PKCε)可促进线粒体烟酰胺腺嘌呤二核苷酸(NAD)的合成。NAD及其还原当量NADH是糖酵解和氧化磷酸化产生能量所需的必需辅助因子。然而,NAD/NADH不能透过线粒体内膜,它们进入线粒体需要特定穿梭系统的活性。最重要的神经元NAD/NADH穿梭系统是苹果酸-天冬氨酸穿梭系统(MAS)。MAS与突触功能有关,在脑缺血期间可能失调。本研究的目的是确定PKCε预处理诱导的代谢变化是否涉及MAS的调节。使用原代神经元培养物,我们观察到PKCε的激活在体外增强了线粒体呼吸和糖酵解。相反,抑制MAS导致氧化磷酸化和糖酵解能力降低。我们进一步证明,PKCε的激活增加了大鼠脑突触体组分中MAS关键成分的磷酸化。此外,PKCε增加了谷草转氨酶2(GOT2)的酶活性,这一效应依赖于PKCε进入线粒体以及GOT2的磷酸化。此外,PKCε激活能够挽救缺血诱导的GOT2活性降低。这些发现揭示了针对缺血性损伤的新的保护靶点和机制,这涉及PKCε介导的MAS中GOT2的磷酸化和激活。