Yang Hui, Zhou Lisha, Shi Qian, Zhao Yuzheng, Lin Huaipeng, Zhang Mengli, Zhao Shimin, Yang Yi, Ling Zhi-Qiang, Guan Kun-Liang, Xiong Yue, Ye Dan
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences Shanghai Medical College Fudan University, Shanghai, China.
School of Pharmacy East China University of Science and Technology, Shanghai, China.
EMBO J. 2015 Apr 15;34(8):1110-25. doi: 10.15252/embj.201591041. Epub 2015 Mar 9.
The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection.
苹果酸 - 天冬氨酸穿梭对于将胞质NADH净转运至线粒体以维持高糖酵解速率和支持肿瘤细胞快速生长不可或缺。苹果酸 - 天冬氨酸穿梭由定位于线粒体和细胞质的两对酶,即谷氨酸草酰乙酸转氨酶(GOT)和苹果酸脱氢酶(MDH)所介导。在此,我们表明线粒体GOT2发生乙酰化,且去乙酰化依赖于线粒体SIRT3。我们已确定乙酰化发生在三个赖氨酸残基K159、K185和K404(3K)处,并增强了GOT2与MDH2之间的结合。这三个残基处的GOT2乙酰化促进了胞质NADH向线粒体的净转运,并改变了线粒体NADH/NAD(+)氧化还原状态以支持ATP生成。此外,GOT2 3K乙酰化刺激NADPH生成以抑制ROS并保护细胞免受氧化损伤。而且,GOT2 3K乙酰化促进体内胰腺细胞增殖和肿瘤生长。最后,我们表明人胰腺肿瘤中GOT2 K159乙酰化增加,这与SIRT3表达降低相关。我们的研究揭示了一种此前未知的机制,即GOT2乙酰化刺激苹果酸 - 天冬氨酸NADH穿梭活性和氧化保护作用。