Suppr超能文献

超薄富氧空位 WO 修饰的单层 BiWO 纳米片:一种用于在可见光和近红外光照射下降解环丙沙星的 2D/2D 异质结。

Ultrathin oxygen-vacancy abundant WO decorated monolayer BiWO nanosheet: A 2D/2D heterojunction for the degradation of Ciprofloxacin under visible and NIR light irradiation.

机构信息

College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China.

College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China.

出版信息

J Colloid Interface Sci. 2019 Nov 15;556:557-567. doi: 10.1016/j.jcis.2019.08.101. Epub 2019 Aug 27.

Abstract

At present, environmental pollution caused by refractory organic pollutants becomes more serious. Semiconductor-based photocatalysis technology, an idea and continuable technology by solar-light-driven, is widely employed to address this situation. Here, oxygen-vacancy rich WO decorated monolayer BiWO nanosheet composite as an atomic scale heterojunction with high active species and ultrafast charge carrier transfer was rationally constructed. The atomic scale V-WO/BiWO composite displayed remarkable photoactivity comparing with pristine V-WO and BiWO ultrathin nanosheet, and about 79.5% of Ciprofloxacin can be degraded within 120 min under visible light irradiation when 40 mg of photocatalyst was added into CIP solution (10 mg/L). The promoted photoactivity can be ascribed to the following points: (1) the composite possesses enormous surface pit, thereby expanding the species surface area and exposing more active site to promote antibiotic absorption; (2) the presence of abundant oxygen vacancy can facilitate the formation of more electrons, which can be consumed by adsorbed molecular oxygen to produce superoxide radical, thereby accelerating degradation organic pollutant; (3) ultrathin V-WO nanosheet decorated monolayer BiWO can shorten the charge carrier transfer distance and enlarge interface contact area, then ensuring remarkable photodegradation efficiency. The reasons for promoted photodegradation efficiency were elaborated based on experiments results and ESR analysis and the degradation pathways of CIP were recorded via [(LC-MS)/MS]. After 5 run for the degradation of CIP, V-WO/BiWO composite also exhibited great photodegradation efficiency, thereby demonstrating its excellent stability and reusability.

摘要

目前,由难降解有机污染物引起的环境污染变得更加严重。基于半导体的光催化技术,一种以太阳能驱动的理念和可持续技术,被广泛用于解决这一问题。在这里,构建了一种具有丰富氧空位的 WO 修饰的单层 BiWO 纳米片复合材料作为原子尺度的异质结,具有高活性物种和超快电荷载流子转移。与原始的 V-WO 和 BiWO 超薄纳米片相比,原子尺度的 V-WO/BiWO 复合材料表现出显著的光活性,当将 40mg 光催化剂加入到 CIP 溶液(10mg/L)中时,大约 79.5%的环丙沙星可以在可见光照射下 120min 内降解。所促进的光活性可以归因于以下几点:(1)复合材料具有巨大的表面凹坑,从而扩大了物种表面积并暴露出更多的活性位点以促进抗生素的吸收;(2)丰富的氧空位的存在可以促进更多电子的形成,这些电子可以被吸附的分子氧消耗,从而产生超氧自由基,从而加速降解有机污染物;(3)超薄的 V-WO 纳米片修饰的单层 BiWO 可以缩短电荷载流子转移距离并扩大界面接触面积,从而确保显著的光降解效率。根据实验结果和 ESR 分析阐述了促进光降解效率的原因,并通过 [(LC-MS)/MS] 记录了 CIP 的降解途径。在进行了 5 次 CIP 的降解循环后,V-WO/BiWO 复合材料仍表现出很高的光降解效率,从而证明了其优异的稳定性和可重复使用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验