Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
J Biomol Struct Dyn. 2020 Aug;38(12):3587-3598. doi: 10.1080/07391102.2019.1662328. Epub 2019 Sep 12.
By having knowledge about the characteristics of protein interaction interfaces, we will be able to manipulate protein complexes for therapies. Dimer state is considered as the primary alphabet of the most proteins' quaternary structure. The properties of binding interface between subunits and of noninterface region define the specificity and stability of the intended protein complex. Considering some topological properties and amino acids' affinity for binding in interfaces of protein dimers, we construct the interface-specific recurrence plots. The data obtained from recurrence quantitative analysis, and accessibility-related metrics help us to classify the protein dimers into four distinct classes. Some mechanical properties of binding interfaces are computed for each predefined class of the dimers. The computed mechanical characteristics of binding patch region are compared with those of nonbinding region of proteins. Our observations indicate that the mechanical properties of protein binding sites have a decisive impact on determining the dimer stability. We introduce a new concept in analyzing protein structure by considering mechanical properties of protein structure. We conclude that the interface region between subunits of stable dimers is usually mechanically softer than the interface of unstable protein dimers. AbbreviationsAABaverage affinity for bindingANManisotropic network modelAPCaffinity propagation clusteringASAaccessible surface areaCCDinter residues distanceCSCcomplex stability codeDMdistance matrixΔGPISA-computed dissociation free energyGNMGaussian normal mode analysisNMAnormal mode analysisPBPprotein binding patchPISAproteins, interfaces, structures and assembliesrASArelative accessible area in respect to unfolded state of residuesRMrecurrence matrixrPrelative protrusionRPrecurrence plotRQArecurrence quantitative analysisSEMstandard error of meanCommunicated by Ramaswamy H. Sarma.
通过了解蛋白质相互作用界面的特性,我们将能够操纵蛋白质复合物进行治疗。二聚体状态被认为是大多数蛋白质四级结构的基本字母。亚基之间结合界面的特性和非界面区域的特性决定了预期蛋白质复合物的特异性和稳定性。考虑到蛋白质二聚体界面中亚基之间的一些拓扑性质和氨基酸结合亲和力,我们构建了界面特异性递归图。从递归定量分析和可及性相关指标中获得的数据,帮助我们将蛋白质二聚体分为四个不同的类别。计算了每个预定义的二聚体类别的结合界面的一些力学特性。将结合斑区域的计算力学特性与蛋白质非结合区域进行比较。我们的观察表明,蛋白质结合位点的力学特性对确定二聚体稳定性有决定性影响。通过考虑蛋白质结构的力学特性,我们在分析蛋白质结构方面引入了一个新概念。我们得出结论,稳定二聚体亚基之间的界面区域通常比不稳定蛋白质二聚体的界面更柔软。缩写AAB平均结合亲和力ANM各向异性网络模型APC亲和力传播聚类ASA可及表面积CCD残基间距离CSC复合物稳定性代码DM距离矩阵ΔGPISA 计算的离解自由能GNMGaussian 正态模态分析NMA 正常模态分析PBP 蛋白质结合斑PISA 蛋白质、界面、结构和组装由 Ramaswamy H. Sarma 传达。