Savannah River National Laboratory, Environmental Science and Biotechnology, Aiken, SC, USA.
Department of Chemical Engineering and Computing, University of South Carolina, 541 Main Street, Columbia, SC, USA.
Appl Microbiol Biotechnol. 2019 Oct;103(20):8327-8338. doi: 10.1007/s00253-019-10091-y. Epub 2019 Aug 28.
Real-time electrochemical monitoring in bioprocesses is an improvement over existing systems because it is versatile and provides more information to the user than periodic measurements of cell density or metabolic activity. Real-time electrochemical monitoring provides the ability to monitor the physiological status of actively growing cells related to electron transfer activity and potential changes in the proton gradient of the cells. Voltammetric and amperometric techniques offer opportunities to monitor electron transfer reactions when electrogenic microbes are used in microbial fuel cells or bioelectrochemical synthesis. Impedance techniques provide the ability to monitor the physiological status of a wide range of microorganisms in conventional bioprocesses. Impedance techniques involve scanning a range of frequencies to define physiological activity in terms of equivalent electrical circuits, thereby enabling the use of computer modeling to evaluate specific growth parameters. Electrochemical monitoring of microbial activity has applications throughout the biotechnology industry for generating real-time data and offers the potential for automated process controls for specific bioprocesses.
生物过程中的实时电化学监测优于现有系统,因为它具有多功能性,并为用户提供比细胞密度或代谢活性的定期测量更多的信息。实时电化学监测提供了监测与电子传递活性和细胞质子梯度电位变化相关的活跃生长细胞的生理状态的能力。当产电微生物用于微生物燃料电池或生物电化学合成时,伏安法和安培法技术提供了监测电子传递反应的机会。阻抗技术提供了监测传统生物过程中各种微生物生理状态的能力。阻抗技术涉及扫描一系列频率,以根据等效电路来定义生理活性,从而能够使用计算机建模来评估特定的生长参数。微生物活性的电化学监测在整个生物技术行业中都有应用,可用于生成实时数据,并为特定生物过程的自动化过程控制提供了潜力。