Suppr超能文献

上下文感知相关滤波学习,以实现视觉跟踪的峰值强度。

Context-Aware Correlation Filter Learning Toward Peak Strength for Visual Tracking.

出版信息

IEEE Trans Cybern. 2021 Oct;51(10):5105-5115. doi: 10.1109/TCYB.2019.2935347. Epub 2021 Oct 12.

Abstract

Recently, the correlation filter (CF) has been catching significant attention in visual tracking for its high efficiency in most state-of-the-art algorithms. However, the tracker easily fails when facing the distractions caused by background clutter, occlusion, and other challenging situations. These distractions commonly exist in the visual object tracking of real applications. Keep tracking under these circumstances is the bottleneck in the field. To improve tracking performance under complex interference, a combination of least absolute shrinkage and selection operator (LASSO) regression and contextual information is introduced to the CF framework through the learning stage in this article to ignore these distractions. Moreover, an elastic net regression is proposed to regroup the features, and an adaptive scale method is implemented to deal with the scale changes during tracking. Theoretical analysis and exhaustive experimental analysis show that the proposed peak strength context-aware (PSCA) CF significantly improves the kernelized CF (KCF) and achieves better performance than other state-of-the-art trackers.

摘要

最近,相关滤波器(CF)在视觉跟踪中因其在大多数最先进算法中的高效性而受到极大关注。然而,当跟踪器遇到背景杂波、遮挡和其他具有挑战性的情况造成的干扰时,它很容易失败。这些干扰在实际应用中的视觉目标跟踪中经常出现。在这些情况下继续跟踪是该领域的瓶颈。为了提高复杂干扰下的跟踪性能,本文通过学习阶段将最小绝对值收缩和选择算子(LASSO)回归和上下文信息结合到 CF 框架中,以忽略这些干扰。此外,提出了一种弹性网络回归来重新组合特征,并实现了自适应尺度方法来处理跟踪过程中的尺度变化。理论分析和详尽的实验分析表明,所提出的峰值强度感知上下文(PSCA)CF 显著提高了核化 CF(KCF)的性能,并优于其他最先进的跟踪器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验