Suppr超能文献

利用底物减少和活性聚类对多重蛋白酶特征进行去卷积。

Deconvolving multiplexed protease signatures with substrate reduction and activity clustering.

机构信息

School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, Georgia, United States of America.

出版信息

PLoS Comput Biol. 2019 Sep 3;15(9):e1006909. doi: 10.1371/journal.pcbi.1006909. eCollection 2019 Sep.

Abstract

Proteases are multifunctional, promiscuous enzymes that degrade proteins as well as peptides and drive important processes in health and disease. Current technology has enabled the construction of libraries of peptide substrates that detect protease activity, which provides valuable biological information. An ideal library would be orthogonal, such that each protease only hydrolyzes one unique substrate, however this is impractical due to off-target promiscuity (i.e., one protease targets multiple different substrates). Therefore, when a library of probes is exposed to a cocktail of proteases, each protease activates multiple probes, producing a convoluted signature. Computational methods for parsing these signatures to estimate individual protease activities primarily use an extensive collection of all possible protease-substrate combinations, which require impractical amounts of training data when expanding to search for more candidate substrates. Here we provide a computational method for estimating protease activities efficiently by reducing the number of substrates and clustering proteases with similar cleavage activities into families. We envision that this method will be used to extract meaningful diagnostic information from biological samples.

摘要

蛋白酶是多功能的、混杂的酶,可降解蛋白质、肽,并驱动健康和疾病中的重要过程。目前的技术已经能够构建肽底物文库,用于检测蛋白酶活性,从而提供有价值的生物学信息。理想的文库应该是正交的,即每种蛋白酶只水解一种独特的底物,但由于非靶标混杂性(即一种蛋白酶靶向多个不同的底物),这是不切实际的。因此,当探针文库暴露于蛋白酶混合物中时,每种蛋白酶都会激活多个探针,产生复杂的特征。用于解析这些特征以估计单个蛋白酶活性的计算方法主要使用广泛的所有可能的蛋白酶-底物组合的集合,当扩展到搜索更多候选底物时,这需要大量的训练数据。在这里,我们提供了一种通过减少底物数量并将具有相似切割活性的蛋白酶聚类成家族来有效估计蛋白酶活性的计算方法。我们设想,这种方法将用于从生物样本中提取有意义的诊断信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b23/6743790/ec436e170d10/pcbi.1006909.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验