Suppr超能文献

评估 12 个多插入缺失标记在亚洲人群中的法医学祖籍预测。

Evaluation of 12 Multi-InDel markers for forensic ancestry prediction in Asian populations.

机构信息

Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.

West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.

出版信息

Forensic Sci Int Genet. 2019 Nov;43:102155. doi: 10.1016/j.fsigen.2019.102155. Epub 2019 Aug 25.

Abstract

Various types of genetic markers have been applied to forensic ancestry inference. Biallelic markers, such as SNPs and InDels, have proven to be optimal choices except for the low information content provided by a single locus. Multi-InDel marker is defined as a specific DNA fragment with several InDel markers located tightly in the physical position. Previous research indicates that multi-InDel markers perform well in population analysis and ancestry inference because of higher degree of polymorphism and remarkable population differences. In this study, a panel consisting of 12 multi-InDel markers was employed to evaluate the general performance in forensic practice and the discrimination power for population analysis. Sample types encountered in routine forensic practice were genotyped to validate the feasibility of regular use. A population study was performed on a total of five Asian populations to verify the discrimination power. Moreover, a double-blind test for ancestry prediction was conducted to assess the predictive capability. In conclusion, these results revealed the significance of multi-InDel markers for population structure stratification. The present panel showed the potential as a valid complementary tool in forensic applications.

摘要

各种类型的遗传标记已被应用于法医祖籍推断。双等位基因标记,如单核苷酸多态性(SNPs)和插入/缺失(InDels),已被证明是最佳选择,除了单个基因座提供的信息量较低。多 InDel 标记定义为具有几个紧密位于物理位置的 InDel 标记的特定 DNA 片段。先前的研究表明,多 InDel 标记在群体分析和祖籍推断中表现良好,因为它们具有更高的多态性和显著的群体差异。在这项研究中,使用了一个包含 12 个多 InDel 标记的面板来评估其在法医实践中的一般性能和群体分析的区分能力。对常规法医实践中遇到的样本类型进行基因分型,以验证其常规使用的可行性。对来自五个亚洲人群的总共五个人群进行了群体研究,以验证其区分能力。此外,还进行了祖籍预测的双盲测试,以评估其预测能力。总之,这些结果揭示了多 InDel 标记在群体结构分层中的重要性。本研究小组的研究结果表明,该面板具有作为法医应用中有效补充工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验