Wang Chenchen, Su Weimin, Gu Hong, Yang Jianchao
School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China.
Sensors (Basel). 2019 Sep 1;19(17):3792. doi: 10.3390/s19173792.
For parallel bistatic forward-looking synthetic aperture radar (SAR) imaging, the instantaneous slant range is a double-square-root expression due to the separate transmitter-receiver system form. The hyperbolic approximation provides a feasible solution to convert the dual square-root expression into a single-square-root expression. However, some high-order terms of the range Taylor expansion have not been considered during the slant range approximation procedure in existing methods, and therefore, inaccurate phase compensation occurs. To obtain a more accurate compensation result, an improved hyperbolic approximation range form with high-order terms is proposed. Then, a modified omega-K algorithm based on the new slant range form is adopted for parallel bistatic forward-looking SAR imaging. Several simulation results validate the effectiveness of the proposed imaging algorithm.
对于并行双基地前视合成孔径雷达(SAR)成像,由于采用了分离的发射机-接收机系统形式,瞬时斜距是一个双平方根表达式。双曲线近似为将双平方根表达式转换为单平方根表达式提供了一种可行的解决方案。然而,现有方法在斜距近似过程中未考虑距离泰勒展开的一些高阶项,因此会出现相位补偿不准确的情况。为了获得更精确的补偿结果,提出了一种包含高阶项的改进双曲线近似距离形式。然后,采用基于新斜距形式的改进型ω-K算法进行并行双基地前视SAR成像。多个仿真结果验证了所提成像算法的有效性。