Suppr超能文献

NPA:一个使用基因表达数据和两层网络计算网络干扰幅度的 R 包。

NPA: an R package for computing network perturbation amplitudes using gene expression data and two-layer networks.

机构信息

PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.

出版信息

BMC Bioinformatics. 2019 Sep 3;20(1):451. doi: 10.1186/s12859-019-3016-x.

Abstract

BACKGROUND

High-throughput gene expression technologies provide complex datasets reflecting mechanisms perturbed in an experiment, typically in a treatment versus control design. Analysis of these information-rich data can be guided based on a priori knowledge, such as networks of related proteins or genes. Assessing the response of a specific mechanism and investigating its biological basis is extremely important in systems toxicology; as compounds or treatment need to be assessed with respect to a predefined set of key mechanisms that could lead to toxicity. Two-layer networks are suitable for this task, and a robust computational methodology specifically addressing those needs was previously published. The NPA package ( https://github.com/philipmorrisintl/NPA ) implements the algorithm, and a data package of eight two-layer networks representing key mechanisms, such as xenobiotic metabolism, apoptosis, or epithelial immune innate activation, is provided.

RESULTS

Gene expression data from an animal study are analyzed using the package and its network models. The functionalities are implemented using R6 classes, making the use of the package seamless and intuitive. The various network responses are analyzed using the leading node analysis, and an overall perturbation, called the Biological Impact Factor, is computed.

CONCLUSIONS

The NPA package implements the published network perturbation amplitude methodology and provides a set of two-layer networks encoded in the Biological Expression Language.

摘要

背景

高通量基因表达技术提供了反映实验中受干扰机制的复杂数据集,通常采用处理与对照设计。可以根据先验知识(如相关蛋白质或基因网络)来指导对这些信息丰富的数据进行分析。在系统毒理学中,评估特定机制的反应并研究其生物学基础非常重要;因为需要根据可能导致毒性的一组预定义关键机制来评估化合物或处理。两层网络适用于这项任务,并且之前已经发布了一种专门针对这些需求的强大计算方法。NPA 包(https://github.com/philipmorrisintl/NPA)实现了该算法,并提供了一个包含八个两层网络的数据包,这些网络代表关键机制,如外源物质代谢、细胞凋亡或上皮免疫固有激活等。

结果

使用该软件包及其网络模型分析了一项动物研究的基因表达数据。该软件的功能是使用 R6 类实现的,这使得该软件的使用无缝且直观。使用主导节点分析来分析各种网络反应,并计算称为“生物影响因子”的整体干扰。

结论

NPA 软件包实现了已发表的网络干扰幅度方法,并提供了一组用生物表达语言编码的两层网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c18/6724309/a1a3529eeeab/12859_2019_3016_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验