Suppr超能文献

利用移动 CRISPRi 调节发病机制。

Modulating Pathogenesis with Mobile-CRISPRi.

机构信息

Chan Zuckerberg Biohub, San Francisco, California, USA.

Department of Medicine, University of California, San Francisco, San Francisco, California, USA.

出版信息

J Bacteriol. 2019 Oct 21;201(22). doi: 10.1128/JB.00304-19. Print 2019 Nov 15.

Abstract

Conditionally essential (CE) genes are required by pathogenic bacteria to establish and maintain infections. CE genes encode virulence factors, such as secretion systems and effector proteins, as well as biosynthetic enzymes that produce metabolites not found in the host environment. Due to their outsized importance in pathogenesis, CE gene products are attractive targets for the next generation of antimicrobials. However, the precise manipulation of CE gene expression in the context of infection is technically challenging, limiting our ability to understand the roles of CE genes in pathogenesis and accordingly design effective inhibitors. We previously developed a suite of CRISPR interference-based gene knockdown tools that are transferred by conjugation and stably integrate into bacterial genomes that we call Mobile-CRISPRi. Here, we show the efficacy of Mobile-CRISPRi in controlling CE gene expression in an animal infection model. We optimize Mobile-CRISPRi in for use in a murine model of pneumonia by tuning the expression of CRISPRi components to avoid nonspecific toxicity. As a proof of principle, we demonstrate that knock down of a CE gene encoding the type III secretion system (T3SS) activator ExsA blocks effector protein secretion in culture and attenuates virulence in mice. We anticipate that Mobile-CRISPRi will be a valuable tool to probe the function of CE genes across many bacterial species and pathogenesis models. Antibiotic resistance is a growing threat to global health. To optimize the use of our existing antibiotics and identify new targets for future inhibitors, understanding the fundamental drivers of bacterial growth in the context of the host immune response is paramount. Historically, these genetic drivers have been difficult to manipulate precisely, as they are requisite for pathogen survival. Here, we provide the first application of Mobile-CRISPRi to study conditionally essential virulence genes in mouse models of lung infection through partial gene perturbation. We envision the use of Mobile-CRISPRi in future pathogenesis models and antibiotic target discovery efforts.

摘要

条件必需(CE)基因是致病菌建立和维持感染所必需的。CE 基因编码毒力因子,如分泌系统和效应蛋白,以及产生宿主环境中不存在的代谢物的生物合成酶。由于它们在发病机制中的重要性,CE 基因产物是下一代抗菌药物的有吸引力的靶标。然而,在感染背景下精确地操纵 CE 基因表达在技术上具有挑战性,限制了我们理解 CE 基因在发病机制中的作用并相应地设计有效抑制剂的能力。我们之前开发了一套基于 CRISPR 干扰的基因敲低工具,这些工具通过共轭转移并稳定整合到我们称之为 Mobile-CRISPRi 的细菌基因组中。在这里,我们展示了 Mobile-CRISPRi 在动物感染模型中控制 CE 基因表达的功效。我们通过调整 CRISPRi 组件的表达来优化 Mobile-CRISPRi 在肺炎小鼠模型中的使用,以避免非特异性毒性。作为原理验证,我们证明了敲低编码 III 型分泌系统(T3SS)激活剂 ExsA 的 CE 基因会阻止效应蛋白在培养物中的分泌并减弱小鼠的毒力。我们预计 Mobile-CRISPRi 将成为一种有价值的工具,可用于研究许多细菌物种和发病机制模型中的 CE 基因的功能。抗生素耐药性是对全球健康的日益威胁。为了优化我们现有抗生素的使用并为未来抑制剂确定新的靶标,了解宿主免疫反应背景下细菌生长的基本驱动因素至关重要。从历史上看,这些遗传驱动因素很难精确操纵,因为它们是病原体生存所必需的。在这里,我们通过部分基因扰动首次将 Mobile-CRISPRi 应用于研究小鼠肺部感染模型中的条件必需毒力基因。我们设想在未来的发病机制模型和抗生素靶标发现工作中使用 Mobile-CRISPRi。

相似文献

1
Modulating Pathogenesis with Mobile-CRISPRi.
J Bacteriol. 2019 Oct 21;201(22). doi: 10.1128/JB.00304-19. Print 2019 Nov 15.
2
Investigating Pseudomonas aeruginosa Gene Function During Pathogenesis Using Mobile-CRISPRi.
Methods Mol Biol. 2024;2721:13-32. doi: 10.1007/978-1-0716-3473-8_2.
5
A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa.
mBio. 2021 Jun 29;12(3):e0083121. doi: 10.1128/mBio.00831-21. Epub 2021 Jun 22.
6
H-NS Family Members MvaT and MvaU Regulate the Pseudomonas aeruginosa Type III Secretion System.
J Bacteriol. 2019 Jun 21;201(14). doi: 10.1128/JB.00054-19. Print 2019 Jul 15.
10
Molecular insights into the master regulator CysB-mediated bacterial virulence in Pseudomonas aeruginosa.
Mol Microbiol. 2019 May;111(5):1195-1210. doi: 10.1111/mmi.14200. Epub 2019 Mar 29.

引用本文的文献

1
2
Transcription modulation of pathogenic streptococcal and enterococcal species using CRISPRi technology.
PLoS Pathog. 2024 Sep 19;20(9):e1012520. doi: 10.1371/journal.ppat.1012520. eCollection 2024 Sep.
3
CRISPRi functional genomics in bacteria and its application to medical and industrial research.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0017022. doi: 10.1128/mmbr.00170-22. Epub 2024 May 29.
4
Mobile-CRISPRi as a powerful tool for modulating gene expression.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0006524. doi: 10.1128/aem.00065-24. Epub 2024 May 22.
5
Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation.
mSphere. 2024 Apr 23;9(4):e0064223. doi: 10.1128/msphere.00642-23. Epub 2024 Mar 21.
6
A CRISPR interference system for engineering biological nitrogen fixation.
mSystems. 2024 Mar 19;9(3):e0015524. doi: 10.1128/msystems.00155-24. Epub 2024 Feb 20.
7
Essential gene knockdowns reveal genetic vulnerabilities and antibiotic sensitivities in .
mBio. 2024 Feb 14;15(2):e0205123. doi: 10.1128/mbio.02051-23. Epub 2023 Dec 21.
8
From microbiome composition to functional engineering, one step at a time.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0006323. doi: 10.1128/mmbr.00063-23. Epub 2023 Nov 10.
9
Investigating Pseudomonas aeruginosa Gene Function During Pathogenesis Using Mobile-CRISPRi.
Methods Mol Biol. 2024;2721:13-32. doi: 10.1007/978-1-0716-3473-8_2.

本文引用的文献

1
Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi.
Nat Microbiol. 2019 Feb;4(2):244-250. doi: 10.1038/s41564-018-0327-z. Epub 2019 Jan 7.
2
Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors.
PLoS Genet. 2018 Nov 7;14(11):e1007749. doi: 10.1371/journal.pgen.1007749. eCollection 2018 Nov.
3
Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design.
Nucleic Acids Res. 2018 Nov 16;46(20):11115-11125. doi: 10.1093/nar/gky884.
4
Toward tunable dynamic repression using CRISPRi.
Biotechnol J. 2018 Sep;13(9):e1800152. doi: 10.1002/biot.201800152. Epub 2018 May 11.
6
The Use of Transposon Insertion Sequencing to Interrogate the Core Functional Genome of the Legume Symbiont .
Front Microbiol. 2016 Nov 22;7:1873. doi: 10.3389/fmicb.2016.01873. eCollection 2016.
7
The Escherichia coli rhaSR-PrhaBAD Inducible Promoter System Allows Tightly Controlled Gene Expression over a Wide Range in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2016 Oct 27;82(22):6715-6727. doi: 10.1128/AEM.02041-16. Print 2016 Nov 15.
8
Depletion of Undecaprenyl Pyrophosphate Phosphatases Disrupts Cell Envelope Biogenesis in Bacillus subtilis.
J Bacteriol. 2016 Oct 7;198(21):2925-2935. doi: 10.1128/JB.00507-16. Print 2016 Nov 1.
9
Non-invasive Intratracheal Instillation in Mice.
Bio Protoc. 2015;5(12). doi: 10.21769/bioprotoc.1504. Epub 2015 Jun 20.
10
A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria.
Cell. 2016 Jun 2;165(6):1493-1506. doi: 10.1016/j.cell.2016.05.003. Epub 2016 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验