Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
Planta. 2019 Dec;250(6):1867-1879. doi: 10.1007/s00425-019-03269-1. Epub 2019 Sep 3.
Cellulosic secondary walls evolved convergently in coralline red macroalgae, reinforcing tissues against wave-induced breakage, despite differences in cellulose abundance, microfibril orientation, and wall structure. Cellulose-enriched secondary cell walls are the hallmark of woody vascular plants, which develop thickened walls to support upright growth and resist toppling in terrestrial environments. Here we investigate the striking presence and convergent evolution of cellulosic secondary walls in coralline red algae, which reinforce thalli against forces applied by crashing waves. Despite ostensible similarities to secondary wall synthesis in land plants, we note several structural and mechanical differences. In coralline red algae, secondary walls contain three-times more cellulose (~ 22% w/w) than primary walls (~ 8% w/w), and their presence nearly doubles the total thickness of cell walls (~ 1.2 µm thick). Field emission scanning electron microscopy revealed that cellulose bundles are cylindrical and lack any predominant orientation in both primary and secondary walls. His-tagged recombinant carbohydrate-binding module differentiated crystalline and amorphous cellulose in planta, noting elevated levels of crystalline cellulose in secondary walls. With the addition of secondary cell walls, Calliarthron genicular tissues become significantly stronger and tougher, yet remain remarkably extensible, more than doubling in length before breaking under tension. Thus, the development of secondary walls contributes to the strong-yet-flexible genicular tissues that enable coralline red algae to survive along wave-battered coastlines throughout the NE Pacific. This study provides an important evolutionary perspective on the development and biomechanical significance of secondary cell walls in a non-model, non-vascular plant.
尽管纤维素丰度、微纤丝取向和细胞壁结构存在差异,但在珊瑚状红藻中,纤维素次生细胞壁以相似的方式进化,以增强组织抵抗波浪引起的断裂的能力。富含纤维素的次生细胞壁是木本维管束植物的标志,它们通过加厚细胞壁来支持直立生长,并在陆地环境中抵抗倒伏。在这里,我们研究了珊瑚状红藻中纤维素次生细胞壁的惊人存在和趋同进化,这些细胞壁增强了藻体抵御海浪冲击的能力。尽管与陆地植物次生壁合成存在明显的相似之处,但我们注意到几个结构和机械上的差异。在珊瑚状红藻中,次生细胞壁的纤维素含量(22%w/w)是初生细胞壁的三倍(8%w/w),其存在使细胞壁的总厚度几乎增加了一倍(~1.2 µm 厚)。场发射扫描电子显微镜显示,纤维素束呈圆柱形,在初生壁和次生壁中均无明显的取向。His 标记的重组碳水化合物结合模块在植物体内区分结晶和无定形纤维素,指出次生壁中结晶纤维素水平升高。随着次生细胞壁的增加,Calliarthron genicular 组织的强度和韧性显著提高,但仍具有惊人的延展性,在张力下断裂前可延长一倍以上。因此,次生细胞壁的发育有助于形成具有强韧而灵活特性的 genicular 组织,使珊瑚状红藻能够在整个东北太平洋的海浪冲击海岸线上生存。本研究为非模式、非维管束植物次生细胞壁的发育和生物力学意义提供了重要的进化视角。