Suppr超能文献

热带森林对季节性干旱的气孔导度响应。

The response of stomatal conductance to seasonal drought in tropical forests.

机构信息

Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA.

School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong.

出版信息

Glob Chang Biol. 2020 Feb;26(2):823-839. doi: 10.1111/gcb.14820. Epub 2019 Oct 17.

Abstract

Stomata regulate CO uptake for photosynthesis and water loss through transpiration. The approaches used to represent stomatal conductance (g ) in models vary. In particular, current understanding of drivers of the variation in a key parameter in those models, the slope parameter (i.e. a measure of intrinsic plant water-use-efficiency), is still limited, particularly in the tropics. Here we collected diurnal measurements of leaf gas exchange and leaf water potential (Ψ ), and a suite of plant traits from the upper canopy of 15 tropical trees in two contrasting Panamanian forests throughout the dry season of the 2016 El Niño. The plant traits included wood density, leaf-mass-per-area (LMA), leaf carboxylation capacity (V ), leaf water content, the degree of isohydry, and predawn Ψ . We first investigated how the choice of four commonly used leaf-level g models with and without the inclusion of Ψ as an additional predictor variable influence the ability to predict g , and then explored the abiotic (i.e. month, site-month interaction) and biotic (i.e. tree-species-specific characteristics) drivers of slope parameter variation. Our results show that the inclusion of Ψ did not improve model performance and that the models that represent the response of g to vapor pressure deficit performed better than corresponding models that respond to relative humidity. Within each g model, we found large variation in the slope parameter, and this variation was attributable to the biotic driver, rather than abiotic drivers. We further investigated potential relationships between the slope parameter and the six available plant traits mentioned above, and found that only one trait, LMA, had a significant correlation with the slope parameter (R  = 0.66, n = 15), highlighting a potential path towards improved model parameterization. This study advances understanding of g dynamics over seasonal drought, and identifies a practical, trait-based approach to improve modeling of carbon and water exchange in tropical forests.

摘要

气孔调节光合作用的 CO2 吸收和蒸腾作用的水分损失。模型中表示气孔导度(g)的方法多种多样。特别是,目前对于模型中一个关键参数(即衡量植物内在水分利用效率的指标)变化的驱动因素的理解仍然有限,特别是在热带地区。在这里,我们在 2016 年厄尔尼诺现象的旱季期间,从两个具有对比性的巴拿马森林的上层树冠中收集了 15 棵热带树木的叶片气体交换和叶片水势(Ψ)的日变化测量值以及一系列植物特征值。植物特征包括木材密度、叶面积质量比(LMA)、叶片羧化能力(V)、叶片含水量、等水度和黎明前 Ψ。我们首先研究了四种常用的叶片水平 g 模型,包括不包括 Ψ 作为附加预测变量时,选择它们对预测 g 的能力有何影响,然后探索了生物因素(即月份、地点-月份相互作用)和生物因素(即树种特异性特征)对斜率参数变化的驱动因素。研究结果表明,包括 Ψ 并没有提高模型性能,而代表 g 对水汽压亏缺响应的模型比相应的对相对湿度响应的模型表现更好。在每个 g 模型中,我们发现斜率参数存在很大的变化,而这种变化归因于生物因素,而不是非生物因素。我们进一步研究了斜率参数与上述六个可用的植物特征值之间的潜在关系,发现只有一个特征值,即 LMA,与斜率参数有显著相关性(R=0.66,n=15),这突出了一种改进模型参数化的潜在途径。本研究增进了对季节性干旱条件下 g 动态的理解,并确定了一种实用的、基于特征的方法来改进热带森林的碳和水交换模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验