Institute for Computational Materials Science, School of Physics and Electronics , Henan University , Kaifeng , 475004 , China.
Institute for Superconducting and Electronic Materials , University of Wollongong , Squires Way , North Wollongong , 2522 , Australia.
ACS Appl Mater Interfaces. 2019 Oct 9;11(40):36658-36665. doi: 10.1021/acsami.9b07414. Epub 2019 Sep 30.
The thermoelectric hetero nano region, as a new strategy, can effectively modulate the electrical and thermal transport properties. In this study, the thermoelectric hetero nano region is explored to improve the thermoelectric performance for BiSbTe material at room temperature, and a high of 1.45 at 325 K has been achieved. We introduce the thermoelectric hetero nano SnTe regions in a BiSbTe matrix by mechanical alloying and spark plasma sintering technique, which decouples the relation between electrical and thermal transport properties. The improved electrical conductivity can be attributed to the increase in carrier concentration due to the increased point defects and Bi/Sb antisite defects. Thermoelectric hetero nano regions effectively scatter the acoustic phonon and thus induce the low lattice thermal conductivity of 0.33 W m K. Due to the synergistic modulation of electrical and thermal transport by the introduction of the thermoelectric hetero nano region, a high value of 1.45 is realized at 325 K.
热电异性纳米区作为一种新策略,可以有效地调节电输运和热输运性能。在这项研究中,我们探索了热电异性纳米区,以提高 BiSbTe 材料在室温下的热电性能,在 325 K 时取得了高达 1.45 的 值。我们通过机械合金化和火花等离子烧结技术在 BiSbTe 基体中引入热电异性纳米 SnTe 区,从而解耦了电输运和热输运性能之间的关系。由于点缺陷和 Bi/Sb 反位缺陷的增加导致载流子浓度增加,从而提高了电导率。热电异性纳米区有效地散射了声子,从而导致晶格热导率降低至 0.33 W m K。由于引入热电异性纳米区对电输运和热输运的协同调节,在 325 K 时实现了高达 1.45 的 值。