Suppr超能文献

基于规则的大鼠五睡眠阶段自动评分方法的建立。

Development of a rule-based automatic five-sleep-stage scoring method for rats.

机构信息

Dept. of Computer Science and Information Engineering, National Cheng Kung University, Tainan, 701, Taiwan.

Department of Medical Sciences Industry, Chang Jung Christian University, Tainan, 711, Taiwan.

出版信息

Biomed Eng Online. 2019 Sep 4;18(1):92. doi: 10.1186/s12938-019-0712-8.

Abstract

BACKGROUND

Sleep problem or disturbance often exists in pain or neurological/psychiatric diseases. However, sleep scoring is a time-consuming tedious labor. Very few studies discuss the 5-stage (wake/NREM1/NREM2/transition sleep/REM) automatic fine analysis of wake-sleep stages in rodent models. The present study aimed to develop and validate an automatic rule-based classification of 5-stage wake-sleep pattern in acid-induced widespread hyperalgesia model of the rat.

RESULTS

The overall agreement between two experts' consensus and automatic scoring in the 5-stage and 3-stage analyses were 92.32% (κ = 0.88) and 94.97% (κ = 0.91), respectively. Standard deviation of the accuracy among all rats was only 2.93%. Both frontal-occipital EEG and parietal EEG data showed comparable accuracies. The results demonstrated the performance of the proposed method with high accuracy and reliability. Subtle changes exhibited in the 5-stage wake-sleep analysis but not in the 3-stage analysis during hyperalgesia development of the acid-induced pain model. Compared with existing methods, our method can automatically classify vigilance states into 5-stage or 3-stage wake-sleep pattern with a promising high agreement with sleep experts.

CONCLUSIONS

In this study, we have performed and validated a reliable automated sleep scoring system in rats. The classification algorithm is less computation power, a high robustness, and consistency of results. The algorithm can be implanted into a versatile wireless portable monitoring system for real-time analysis in the future.

摘要

背景

疼痛或神经/精神疾病常伴有睡眠问题或障碍。然而,睡眠评分是一项耗时费力的工作。很少有研究讨论过在啮齿动物模型中对清醒-睡眠阶段进行 5 阶段(觉醒/NREM1/NREM2/过渡睡眠/REM)的自动精细分析。本研究旨在开发和验证一种基于规则的自动分类方法,用于分析酸诱导的广泛痛觉过敏模型中大鼠的 5 阶段清醒-睡眠模式。

结果

两位专家共识和自动评分在 5 阶段和 3 阶段分析中的总体一致性分别为 92.32%(κ=0.88)和 94.97%(κ=0.91)。所有大鼠的准确性标准差仅为 2.93%。额枕 EEG 和顶叶 EEG 数据均显示出相当的准确性。结果表明,所提出的方法具有高精度和高可靠性。在酸诱导疼痛模型的痛觉过敏发展过程中,5 阶段清醒-睡眠分析中表现出细微变化,但 3 阶段分析中则没有。与现有方法相比,我们的方法可以自动将警觉状态分类为 5 阶段或 3 阶段清醒-睡眠模式,与睡眠专家的高度一致。

结论

在这项研究中,我们对大鼠进行了可靠的自动睡眠评分系统的性能验证。分类算法计算量小、鲁棒性高、结果一致性好。该算法可以植入到通用的无线便携式监测系统中,以便将来进行实时分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28f7/6727553/3a12aa875f24/12938_2019_712_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验