Suppr超能文献

基于非侵入性获取的运动和呼吸活动测量,自动确定大鼠的觉醒和睡眠状态。

Automated determination of wakefulness and sleep in rats based on non-invasively acquired measures of movement and respiratory activity.

机构信息

Sleep Research Laboratory, Department of Anatomy and Pathology, Eastern Virginia Medical School, Norfolk, VA, USA.

出版信息

J Neurosci Methods. 2012 Mar 15;204(2):276-87. doi: 10.1016/j.jneumeth.2011.12.001. Epub 2011 Dec 9.

Abstract

The current standard for monitoring sleep in rats requires labor intensive surgical procedures and the implantation of chronic electrodes which have the potential to impact behavior and sleep. With the goal of developing a non-invasive method to determine sleep and wakefulness, we constructed a non-contact monitoring system to measure movement and respiratory activity using signals acquired with pulse Doppler radar and from digitized video analysis. A set of 23 frequency and time-domain features were derived from these signals and were calculated in 10s epochs. Based on these features, a classification method for automated scoring of wakefulness, non-rapid eye movement sleep (NREM) and REM in rats was developed using a support vector machine (SVM). We then assessed the utility of the automated scoring system in discriminating wakefulness and sleep by comparing the results to standard scoring of wakefulness and sleep based on concurrently recorded EEG and EMG. Agreement between SVM automated scoring based on selected features and visual scores based on EEG and EMG were approximately 91% for wakefulness, 84% for NREM and 70% for REM. The results indicate that automated scoring based on non-invasively acquired movement and respiratory activity will be useful for studies requiring discrimination of wakefulness and sleep. However, additional information or signals will be needed to improve discrimination of NREM and REM episodes within sleep.

摘要

目前监测大鼠睡眠的标准需要进行劳动强度大的手术程序,并植入慢性电极,这有可能影响行为和睡眠。为了开发一种非侵入性的方法来确定睡眠和清醒状态,我们构建了一种非接触式监测系统,使用脉冲多普勒雷达获取的信号和数字化视频分析来测量运动和呼吸活动。从这些信号中提取了一组 23 个频域和时域特征,并在 10 秒的时间内进行计算。基于这些特征,使用支持向量机(SVM)开发了一种用于自动评分大鼠清醒、非快速眼动睡眠(NREM)和 REM 的分类方法。然后,我们通过将结果与基于同时记录的 EEG 和 EMG 的标准清醒和睡眠评分进行比较,评估了自动评分系统在区分清醒和睡眠方面的效用。基于选定特征的 SVM 自动评分与基于 EEG 和 EMG 的视觉评分之间的一致性对于清醒状态约为 91%,对于 NREM 约为 84%,对于 REM 约为 70%。结果表明,基于非侵入性获取的运动和呼吸活动的自动评分将有助于需要区分清醒和睡眠的研究。然而,需要额外的信息或信号来提高睡眠期间 NREM 和 REM 发作的区分能力。

相似文献

1
Automated determination of wakefulness and sleep in rats based on non-invasively acquired measures of movement and respiratory activity.
J Neurosci Methods. 2012 Mar 15;204(2):276-87. doi: 10.1016/j.jneumeth.2011.12.001. Epub 2011 Dec 9.
2
Design and validation of a computer-based sleep-scoring algorithm.
J Neurosci Methods. 2004 Feb 15;133(1-2):71-80. doi: 10.1016/j.jneumeth.2003.09.025.
3
The Visual Scoring of Sleep in Infants 0 to 2 Months of Age.
J Clin Sleep Med. 2016 Mar;12(3):429-45. doi: 10.5664/jcsm.5600.
5
Classification of awake, REM, and NREM from EEG via singular spectrum analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4769-72. doi: 10.1109/EMBC.2015.7319460.
6
Real-time sleep-wake scoring in the rat using a single EEG channel.
Sleep. 1994 Mar;17(2):113-9. doi: 10.1093/sleep/17.2.113.
9
Scoring of sleep and wakefulness by behavioral analysis from video recordings in rhesus monkeys: comparison with conventional EEG analysis.
Electroencephalogr Clin Neurophysiol. 1998 Mar;106(3):206-12. doi: 10.1016/s0013-4694(97)00152-1.

引用本文的文献

1
Contactless monitoring of respiratory rate variability in rats under anesthesia with a compact 24GHz microwave radar sensor.
Front Vet Sci. 2025 Mar 26;12:1518140. doi: 10.3389/fvets.2025.1518140. eCollection 2025.
2
Orthologs of and impact sleep in mice.
Sleep Adv. 2024 Dec 12;5(1):zpae092. doi: 10.1093/sleepadvances/zpae092. eCollection 2024.
3
Somnotate: A probabilistic sleep stage classifier for studying vigilance state transitions.
PLoS Comput Biol. 2024 Jan 17;20(1):e1011793. doi: 10.1371/journal.pcbi.1011793. eCollection 2024 Jan.
4
A conserved role for in sleep architecture.
Sleep Adv. 2023 Nov 28;4(1):zpad045. doi: 10.1093/sleepadvances/zpad045. eCollection 2023.
6
Machine learning-based clustering and classification of mouse behaviors via respiratory patterns.
iScience. 2022 Nov 19;25(12):105625. doi: 10.1016/j.isci.2022.105625. eCollection 2022 Dec 22.
7
Scoring sleep using respiration and movement-based features.
MethodsX. 2022 Mar 31;9:101682. doi: 10.1016/j.mex.2022.101682. eCollection 2022.
8
9
Long-term stability of physiological signals within fluctuations of brain state under urethane anesthesia.
PLoS One. 2021 Oct 25;16(10):e0258939. doi: 10.1371/journal.pone.0258939. eCollection 2021.

本文引用的文献

1
Clip-on wireless wearable microwave sensor for ambulatory cardiac monitoring.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:365-9. doi: 10.1109/IEMBS.2010.5627972.
2
Markov processes for the prediction of aircraft noise effects on sleep.
Med Decis Making. 2010 Mar-Apr;30(2):275-89. doi: 10.1177/0272989X09342751. Epub 2009 Aug 14.
3
Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5274-7. doi: 10.1109/IEMBS.2008.4650404.
4
Improving actigraph sleep/wake classification with cardio-respiratory signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5262-5. doi: 10.1109/IEMBS.2008.4650401.
5
Assessment of sleep/wake patterns using a non-contact biomotion sensor.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:514-7. doi: 10.1109/IEMBS.2008.4649203.
7
An overview of statistical learning theory.
IEEE Trans Neural Netw. 1999;10(5):988-99. doi: 10.1109/72.788640.
8
Sleep-stage scoring in the rat using a support vector machine.
J Neurosci Methods. 2008 Mar 15;168(2):524-34. doi: 10.1016/j.jneumeth.2007.10.027. Epub 2007 Nov 17.
10
Sleep state scoring in infants from respiratory and activity measurements.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2462-5. doi: 10.1109/IEMBS.2006.259719.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验