Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
J Biol Inorg Chem. 2019 Sep;24(6):793-807. doi: 10.1007/s00775-019-01708-8. Epub 2019 Sep 5.
The synthesis and characterization of short peptide-based maquettes of metalloprotein active sites facilitate an inquiry into their structure/function relationships and evolution. The [4Fe-4S]-maquettes of bacterial ferredoxin metalloproteins (Fd) have been used in the past to engineer redox active centers into artificial metalloenzymes. The novelty of our study is the application of maquettes to the superfamily of [4Fe-4S] cluster and S-adenosylmethionine-dependent radical metalloenzymes (radical SAM). The radical SAM superfamily enzymes contain site-differentiated, redox active [4Fe-4S] clusters coordinated to CxCxC or related motifs, which is in contrast to the CxCxC motif found in bacterial ferredoxins (Fd). Under an optimized set of experimental conditions, a high degree of reconstitution (80-100%) was achieved for both radical SAM- and Fd-maquettes. Negligible chemical speciation was observed for all sequences, with predominantly [4Fe-4S] for the 'as-reconstituted' state. However, the reduction of [4Fe-4S]-maquettes provides low conversion (7-17%) to the paramagnetic [4Fe-4S] state, independent of either the spacing of the cysteine residues (CxCxC vs. CxCxC), the nature of intervening amino acids, or the length of the cluster binding motif. In the absence of the stabilizing protein environment, the reduction process is proposed to proceed via [4Fe-4S] cluster disassembly and reassembly in a more reduced state. UV-Vis and EPR spectroscopic techniques are employed as analytical tools to quantitate the as-reconstituted (or oxidized) and one-electron reduced states of the [4Fe-4S] clusters, respectively. We demonstrate that short Fd and radical SAM derived 7- to 9-mer peptides containing appropriate cysteine motifs function equally well in coordinating redox active [4Fe-4S] clusters.
短肽模拟物的合成与表征促进了对金属蛋白活性位点结构/功能关系和进化的研究。过去,细菌铁氧还蛋白金属蛋白(Fd)的[4Fe-4S]-模拟物被用于将氧化还原活性中心工程化到人工金属酶中。我们研究的新颖之处在于将模拟物应用于[4Fe-4S]簇和 S-腺苷甲硫氨酸依赖性自由基金属酶(自由基 SAM)超家族。自由基 SAM 超家族酶包含位点分化的、氧化还原活性的[4Fe-4S]簇与 CxCxC 或相关基序配位,与细菌铁氧还蛋白(Fd)中的 CxCxC 基序形成对比。在优化的一组实验条件下,实现了自由基 SAM-和 Fd-模拟物的高度重建(80-100%)。所有序列的化学形态都可以忽略不计,主要为“重建后”状态的[4Fe-4S]。然而,[4Fe-4S]-模拟物的还原提供了低转化率(7-17%)至顺磁[4Fe-4S]状态,这与半胱氨酸残基的间距(CxCxC 与 CxCxC)、介入氨基酸的性质或簇结合基序的长度无关。在没有稳定的蛋白质环境的情况下,提出还原过程通过[4Fe-4S]簇的拆卸和在更还原状态下的重新组装进行。UV-Vis 和 EPR 光谱技术分别用作定量分析工具,以分别定量[4Fe-4S]簇的重建(或氧化)和单电子还原状态。我们证明了含有适当半胱氨酸基序的短 Fd 和自由基 SAM 衍生的 7-9 肽同样能够很好地协调氧化还原活性[4Fe-4S]簇。