Schmid College of Science and Technology , Chapman University , Orange , California 98266 , United States.
School of Chemistry , University of Sydney , Sydney , New South Wales 2006 , Australia.
J Phys Chem A. 2019 Sep 26;123(38):8109-8121. doi: 10.1021/acs.jpca.9b06268. Epub 2019 Sep 17.
The photochemistry of glyoxylic acid (HC(O)C(O)OH) is explored in the near UV in both the singlet (/) and triplet () manifolds using density functional theory (M06-2X/aug-cc-pVTZ) to reach an overall mechanistic picture of the atmospherically relevant photochemistry in the gas phase. The calculated energies and structures are also used in RRKM kinetics calculations to compare the relative reaction rates on each of these electronic states. The major photolysis pathways are two possible photodecarboxylation reactions: direct C-C bond cleavage (Norrish Type I reaction) and β-hydrogen transfer followed by CO loss. These results indicate that from λ = 350-380 nm both photodecarboxylation pathways can occur following intersystem crossing to the surface. However, hydrogen transfer-decarboxylation initiated on becomes increasingly important at λ < 350 nm. At the lower energy UV wavelengths available in the atmosphere (λ = 380-400 nm), reactions can only occur in where concerted hydrogen transfer-decarboxylation is the dominant dissociation pathway with some minor contributions from CO loss/decarbonylation reactions.
乙二醛酸(HC(O)C(O)OH)的光化学在近紫外光区的 singlet (/)/和 triplet ()多重态中进行,使用密度泛函理论(M06-2X/aug-cc-pVTZ)来达到气相中大气相关光化学的整体机制图景。计算的能量和结构也用于 RRKM 动力学计算,以比较每个电子态上的相对反应速率。主要的光解途径是两种可能的脱羧反应:直接 C-C 键断裂(Norrish 型 I 反应)和β-氢转移,随后 CO 损失。这些结果表明,从 λ = 350-380nm 开始,两种脱羧途径都可以通过系间穿越到 表面发生。然而,在 λ < 350nm 时,氢转移-脱羧引发的反应变得越来越重要。在大气中可用的较低能量紫外波长(λ = 380-400nm)下,只有在 中才能发生反应,其中协同氢转移-脱羧是主要的离解途径,CO 损失/脱羰反应有一些较小的贡献。