Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States.
International Institute of Nanotechnology , Evanston , Illinois 60208 , United States.
ACS Nano. 2019 Sep 24;13(9):10301-10311. doi: 10.1021/acsnano.9b03727. Epub 2019 Sep 13.
B-cell lymphoma cells depend upon cholesterol to maintain pro-proliferation and pro-survival signaling the B-cell receptor. Targeted cholesterol depletion of lymphoma cells is an attractive therapeutic strategy. We report here high-density lipoprotein mimicking magnetic nanostructures (HDL-MNSs) that can bind to the high-affinity HDL receptor, scavenger receptor type B1 (SR-B1), and interfere with cholesterol flux mechanisms in SR-B1 receptor positive lymphoma cells, causing cellular cholesterol depletion. In addition, the MNS core can be utilized for its ability to generate heat under an external radio frequency field. The thermal activation of MNS can lead to both innate and adaptive antitumor immune responses by inducing the expression of heat shock proteins that lead to activation of antigen presenting cells and finally lymphocyte trafficking. In the present study, we demonstrate SR-B1 receptor mediated binding and cellular uptake of HDL-MNS and prevention of phagolysosome formation by transmission electron microscopy, fluorescence microscopy, and ICP-MS analysis. The combinational therapeutics of cholesterol depletion and thermal activation significantly improves therapeutic efficacy in SR-B1 expressing lymphoma cells. HDL-MNS reduces the relaxation time under magnetic resonance imaging (MRI) more effectively compared with a commercially available contrast agent, and the specificity of HDL-MNS toward the SR-B1 receptor leads to differential contrast between SR-B1 positive and negative cells suggesting its utility in diagnostic imaging. Overall, we have demonstrated that HDL-MNSs have cell specific targeting efficiency, can modulate cholesterol efflux, can induce thermal activation mediated antitumor immune response, and possess high contrast under MRI, making it a promising theranostic platform in lymphoma.
B 细胞淋巴瘤细胞依赖胆固醇来维持增殖和生存信号 B 细胞受体。靶向淋巴瘤细胞胆固醇耗竭是一种有吸引力的治疗策略。我们在这里报告高密度脂蛋白模拟磁性纳米结构 (HDL-MNS),可以结合高亲和力的 HDL 受体,清道夫受体 B1 (SR-B1),并干扰 SR-B1 受体阳性淋巴瘤细胞中的胆固醇流动机制,导致细胞胆固醇耗竭。此外,MNS 核可以利用其在外部射频场下产生热量的能力。MNS 的热激活可以通过诱导热休克蛋白的表达来诱导抗原呈递细胞的激活,最终导致淋巴细胞的迁移,从而引发先天和适应性抗肿瘤免疫反应。在本研究中,我们通过透射电子显微镜、荧光显微镜和 ICP-MS 分析证实了 HDL-MNS 的 SR-B1 受体介导的结合和细胞摄取以及吞噬体形成的预防。胆固醇耗竭和热激活的联合治疗显著提高了表达 SR-B1 的淋巴瘤细胞的治疗效果。与市售的造影剂相比,HDL-MNS 能更有效地降低磁共振成像 (MRI) 下的弛豫时间,而 HDL-MNS 对 SR-B1 受体的特异性导致了 SR-B1 阳性和阴性细胞之间的差异对比,提示其在诊断成像中的应用。总之,我们已经证明了 HDL-MNS 具有细胞特异性靶向效率,可以调节胆固醇外排,可以诱导热激活介导的抗肿瘤免疫反应,并且在 MRI 下具有高对比度,使其成为淋巴瘤治疗的有前途的治疗平台。