Wang Hui-Ru, Tang Jen-Yang, Wang Yen-Yun, Farooqi Ammad Ahmad, Yen Ching-Yu, Yuan Shyng-Shiou F, Huang Hurng-Wern, Chang Hsueh-Wei
Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
Cancers (Basel). 2019 Sep 4;11(9):1303. doi: 10.3390/cancers11091303.
Marine sponge-derived manoalide has a potent anti-inflammatory effect, but its potential application as an anti-cancer drug has not yet been extensively investigated. The purpose of this study is to evaluate the antiproliferative effects of manoalide on oral cancer cells. MTS assay at 24 h showed that manoalide inhibited the proliferation of six types of oral cancer cell lines (SCC9, HSC3, OC2, OECM-1, Ca9-22, and CAL 27) but did not affect the proliferation of normal oral cell line (human gingival fibroblasts (HGF-1)). Manoalide also inhibits the ATP production from 3D sphere formation of Ca9-22 and CAL 27 cells. Mechanically, manoalide induces subG1 accumulation in oral cancer cells. Manoalide also induces more annexin V expression in oral cancer Ca9-22 and CAL 27 cells than that of HGF-1 cells. Manoalide induces activation of caspase 3 (Cas 3), which is a hallmark of apoptosis in oral cancer cells, Ca9-22 and CAL 27. Inhibitors of Cas 8 and Cas 9 suppress manoalide-induced Cas 3 activation. Manoalide induces higher reactive oxygen species (ROS) productions in Ca9-22 and CAL 27 cells than in HGF-1 cells. This oxidative stress induction by manoalide is further supported by mitochondrial superoxide (MitoSOX) production and mitochondrial membrane potential (MitoMP) destruction in oral cancer cells. Subsequently, manoalide-induced oxidative stress leads to DNA damages, such as γH2AX and 8-oxo-2'-deoxyguanosine (8-oxodG), in oral cancer cells. Effects, such as enhanced antiproliferation, apoptosis, oxidative stress, and DNA damage, in manoalide-treated oral cancer cells were suppressed by inhibitors of oxidative stress or apoptosis, or both, such as -acetylcysteine (NAC) and Z-VAD-FMK (Z-VAD). Moreover, mitochondria-targeted superoxide inhibitor MitoTEMPO suppresses manoalide-induced MitoSOX generation and γH2AX/8-oxodG DNA damages. This study validates the preferential antiproliferation effect of manoalide and explores the oxidative stress-dependent mechanisms in anti-oral cancer treatment.
海洋海绵来源的软海绵素具有强大的抗炎作用,但其作为抗癌药物的潜在应用尚未得到广泛研究。本研究的目的是评估软海绵素对口腔癌细胞的抗增殖作用。24小时的MTS检测表明,软海绵素抑制了六种口腔癌细胞系(SCC9、HSC3、OC2、OECM-1、Ca9-22和CAL 27)的增殖,但不影响正常口腔细胞系(人牙龈成纤维细胞(HGF-1))的增殖。软海绵素还抑制Ca9-22和CAL 27细胞3D球体形成中的ATP产生。从机制上讲,软海绵素诱导口腔癌细胞中出现亚G1期积累。软海绵素还诱导口腔癌Ca9-22和CAL 27细胞中膜联蛋白V的表达高于HGF-1细胞。软海绵素诱导半胱天冬酶3(Cas 3)活化,这是口腔癌细胞Ca9-22和CAL 27凋亡的标志。Cas 8和Cas 9抑制剂可抑制软海绵素诱导的Cas 3活化。软海绵素在Ca9-22和CAL 27细胞中诱导产生的活性氧(ROS)比在HGF-1细胞中更高。口腔癌细胞中线粒体超氧化物(MitoSOX)产生和线粒体膜电位(MitoMP)破坏进一步支持了软海绵素诱导的这种氧化应激。随后,软海绵素诱导的氧化应激导致口腔癌细胞中DNA损伤,如γH2AX和8-氧代-2'-脱氧鸟苷(8-氧代dG)。在软海绵素处理的口腔癌细胞中,诸如增强的抗增殖、凋亡、氧化应激和DNA损伤等效应被氧化应激抑制剂或凋亡抑制剂或两者抑制,如N-乙酰半胱氨酸(NAC)和Z-VAD-FMK(Z-VAD)。此外,线粒体靶向超氧化物抑制剂MitoTEMPO抑制软海绵素诱导的MitoSOX产生和γH2AX/8-氧代dG DNA损伤。本研究验证了软海绵素的优先抗增殖作用,并探索了抗口腔癌治疗中氧化应激依赖性机制。
Onco Targets Ther. 2019-7-3
Antioxidants (Basel). 2020-8-3
Pharmaceuticals (Basel). 2021-9-29
Antioxidants (Basel). 2023-7-14
Int J Mol Sci. 2023-3-23
Cancers (Basel). 2022-11-22
Antioxidants (Basel). 2022-10-20
Antioxidants (Basel). 2022-10-4
Mar Drugs. 2017-10-13