Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon.
Integrative Biosciences Department, School Dentistry, Oregon Health and Science University, Portland, Oregon.
Glia. 2020 Feb;68(2):263-279. doi: 10.1002/glia.23715. Epub 2019 Sep 6.
Myelination delay and remyelination failure following insults to the central nervous system (CNS) impede axonal conduction and lead to motor, sensory and cognitive impairments. Both myelination and remyelination are often inhibited or delayed due to the failure of oligodendrocyte progenitor cells (OPCs) to mature into myelinating oligodendrocytes (OLs). Digestion products of the glycosaminoglycan hyaluronan (HA) have been implicated in blocking OPC maturation, but how these digestion products are generated is unclear. We tested the possibility that hyaluronidase activity is directly linked to the inhibition of OPC maturation by developing a novel modified flavonoid that functions as a hyaluronidase inhibitor. This compound, called S3, blocks some but not all hyaluronidases and only inhibits matrix metalloproteinase activity at high concentrations. We find that S3 reverses HA-mediated inhibition of OPC maturation in vitro, an effect that can be overcome by excess recombinant hyaluronidase. Furthermore, we find that hyaluronidase inhibition by S3 accelerates OPC maturation in an in vitro model of perinatal white matter injury. Finally, blocking hyaluronidase activity with S3 promotes functional remyelination in mice with lysolecithin-induced demyelinating corpus callosum lesions. All together, these findings support the notion that hyaluronidase activity originating from OPCs in CNS lesions is sufficient to prevent OPC maturation, which delays myelination or blocks remyelination. These data also indicate that modified flavonoids can act as selective inhibitors of hyaluronidase activity and can promote OPC maturation, making them excellent candidates to accelerate myelination or promote remyelination following perinatal and adult CNS insults.
中枢神经系统(CNS)损伤后会出现髓鞘形成延迟和再髓鞘失败,这会阻碍轴突传导,并导致运动、感觉和认知障碍。由于少突胶质前体细胞(OPC)不能成熟为髓鞘形成的少突胶质细胞(OL),髓鞘形成和再髓鞘常常受到抑制或延迟。糖胺聚糖透明质酸(HA)的消化产物被认为会阻止 OPC 成熟,但这些消化产物是如何产生的尚不清楚。我们通过开发一种新型的、作为透明质酸酶抑制剂的改良黄酮类化合物,测试了透明质酸酶活性与 OPC 成熟抑制直接相关的可能性。这种化合物称为 S3,可阻断部分而非全部透明质酸酶,并且仅在高浓度下抑制基质金属蛋白酶活性。我们发现 S3 可逆转 HA 介导的 OPC 体外成熟抑制,而过量重组透明质酸酶可克服该抑制作用。此外,我们发现 S3 抑制透明质酸酶可加速体外围产期白质损伤模型中的 OPC 成熟。最后,用 S3 阻断透明质酸酶活性可促进溶卵磷脂诱导的胼胝体脱髓鞘病变小鼠的功能再髓鞘化。总而言之,这些发现支持以下观点:源自 CNS 损伤的 OPC 中的透明质酸酶活性足以阻止 OPC 成熟,从而延迟髓鞘形成或阻止再髓鞘化。这些数据还表明,修饰黄酮类化合物可以作为透明质酸酶活性的选择性抑制剂,并可促进 OPC 成熟,使其成为加速围产期和成年期 CNS 损伤后髓鞘形成或促进再髓鞘化的优秀候选物。