Suppr超能文献

协同控制结构无序性和表面键合性质以优化氧化锰作为锂氧电池电催化剂和阴极的功能

Synergistic Control of Structural Disorder and Surface Bonding Nature to Optimize the Functionality of Manganese Oxide as an Electrocatalyst and a Cathode for Li-O Batteries.

作者信息

Jin Xiaoyan, Park Mihui, Shin Seung-Jae, Jo Yujin, Kim Min Gyu, Kim Hyungjun, Kang Yong-Mook, Hwang Seong-Ju

机构信息

Center for Hybrid Interfacial Chemical Structure (CICS), Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.

Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.

出版信息

Small. 2020 Mar;16(12):e1903265. doi: 10.1002/smll.201903265. Epub 2019 Sep 6.

Abstract

An efficient way to improve the electrocatalyst and Li-O battery performances of metal oxide is developed by an exquisite synergistic control over structural disorder and surface bonding nature. The effects of amorphous nature and surface chemical environment on the functionalities of metal oxide are systematically investigated with well-crystalline and amorphous MnO nanocrystals with/without surface anchoring of highly oxidized iodate clusters. The amorphous MnO nanocrystal containing anchored iodate clusters shows much better performance as an oxygen evolution electrocatalyst and cathode catalyst for Li-O batteries than both iodate-free amorphous and well-crystalline homologues, underscoring the remarkable advantage of simultaneous enhancement of structural disorder and surface electron density. In situ X-ray absorption spectroscopic analysis demonstrates the promoted formation of double (MnO) bond, a critical step of oxygen evolution reaction, upon amorphization caused by the poor orbital overlap inside highly disordered crystallites. The beneficial effects of iodate anchoring and amorphization on electrocatalyst functionality are attributable to the alteration of surface bonding character, stabilization of Jahn-Teller active Mn species, and enhanced charge transfer of interfaces. The present study underscores that fine-tuning of structural disorder and surface bonding nature provides an effective methodology to explore efficient metal oxide-based electrocatalysts.

摘要

通过对结构无序和表面键合性质进行精细的协同控制,开发出一种提高金属氧化物电催化剂和锂氧电池性能的有效方法。利用具有/不具有高氧化态碘酸盐簇表面锚定的结晶态和非晶态MnO纳米晶体,系统地研究了非晶态性质和表面化学环境对金属氧化物功能的影响。含有锚定碘酸盐簇的非晶态MnO纳米晶体作为锂氧电池的析氧电催化剂和阴极催化剂,其性能比不含碘酸盐的非晶态和结晶态同系物都要好得多,这突出了同时增强结构无序和表面电子密度的显著优势。原位X射线吸收光谱分析表明,在高度无序的微晶内部由于轨道重叠不良导致非晶化时,双(MnO)键的形成得到促进,这是析氧反应的关键步骤。碘酸盐锚定和非晶化对电催化剂功能的有益影响归因于表面键合特性的改变、 Jahn-Teller活性Mn物种的稳定以及界面电荷转移的增强。本研究强调,对结构无序和表面键合性质进行微调为探索高效的基于金属氧化物的电催化剂提供了一种有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验