Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Quebec J1K 2R1, Canada.
Inria, Team SECRET, 2 Rue Simone IFF, CS 42112, 75589 Paris Cedex 12, France.
Phys Rev Lett. 2019 Aug 16;123(7):070507. doi: 10.1103/PhysRevLett.123.070507.
Magic-state distillation is a resource intensive subroutine for quantum computation. The ratio of noisy input states to output states with an error rate at most ε scales as O(log^{γ}(1/ε)) [S. Bravyi and J. Haah, Magic-state distillation with low overhead, Phys. Rev. A 86, 052329 (2012)10.1103/PhysRevA.86.052329]. In a breakthrough paper, Hastings and Haah [Distillation with Sublogarithmic Overhead, Phys. Rev. Lett. 120, 050504 (2018)10.1103/PhysRevLett.120.050504] showed that it is possible to construct distillation routines with a sublogarithmic overhead, achieving γ≈0.6779 and falsifying a conjecture that γ is lower bounded by 1. They then ask whether γ can be made arbitrarily close to 0. We answer this question in the affirmative for magic-state distillation routines using qudits of prime dimension (d dimensional quantum systems for prime d).
魔术态蒸馏是量子计算中资源密集型的子程序。具有误差率最多 ε 的噪声输入态与输出态的比例大约为 O(log^{γ}(1/ε)) [S. Bravyi 和 J. Haah,具有低开销的魔术态蒸馏,Phys. Rev. A 86, 052329 (2012)10.1103/PhysRevA.86.052329]。在一篇突破性的论文中,Hastings 和 Haah [具有亚对数开销的蒸馏,Phys. Rev. Lett. 120, 050504 (2018)10.1103/PhysRevLett.120.050504] 表明,有可能构建具有亚对数开销的蒸馏例程,实现 γ≈0.6779,并否定了 γ 的下界由 1 给出的猜想。然后他们问 γ 是否可以任意接近 0。我们使用素数维度的量子位(d 维量子系统,其中 d 为素数)回答了这个问题,对于魔术态蒸馏例程,γ 可以为正。