Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, 310058 Hangzhou, China.
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, 310012 Hangzhou, China.
Phys Rev Lett. 2019 Jul 26;123(4):048001. doi: 10.1103/PhysRevLett.123.048001.
Dry, wet, dense, and dilute granular flows have been previously considered fundamentally different and thus described by distinct, and in many cases incompatible, rheologies. We carry out extensive simulations of granular flows, including wet and dry conditions, various geometries and driving mechanisms (boundary driven, fluid driven, and gravity driven), many of which are not captured by standard rheology models. For all simulated conditions, except for fluid-driven and gravity-driven flows close to the flow threshold, we find that the Mohr-Coulomb friction coefficient μ scales with the square root of the local Péclet number Pe provided that the particle diameter exceeds the particle mean free path. With decreasing Pe and granular temperature gradient M, this general scaling breaks down, leading to a yield condition with a variable yield stress ratio characterized by M.
干颗粒流、湿颗粒流、密集颗粒流和稀释颗粒流此前被认为在本质上是不同的,因此采用了不同的、在许多情况下甚至是不兼容的流变性来描述。我们进行了广泛的颗粒流模拟,包括干、湿条件,各种几何形状和驱动机制(边界驱动、流体驱动和重力驱动),其中许多条件都无法用标准流变性模型来捕捉。除了接近流动阈值的流体驱动和重力驱动流动外,对于所有模拟的条件,我们发现 Mohr-Coulomb 摩擦系数 μ 与局部 Peclet 数 Pe 的平方根成正比,只要颗粒直径超过颗粒平均自由程。随着 Pe 和颗粒温度梯度 M 的减小,这种普遍的标度关系会失效,导致出现一种具有可变屈服应力比的屈服条件,该屈服条件由 M 来表征。