Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
Institute for Topological Insulators, Am Hubland, D-97074 Würzburg, Germany.
Phys Rev Lett. 2019 Jul 26;123(4):047701. doi: 10.1103/PhysRevLett.123.047701.
Quantum spin Hall edge channels hold great promise as dissipationless one-dimensional conductors. However, the ideal quantized conductance of 2e^{2}/h is only found in very short channels-in contradiction with the expected protection against backscattering of the topological insulator state. In this Letter we show that enhancing the band gap does not improve quantization. When we instead alter the potential landscape by charging trap states in the gate dielectric using gate training, we approach conductance quantization for macroscopically long channels. Effectively, the scattering length increases to 175 μm, more than 1 order of magnitude longer than in previous works for HgTe-based quantum wells. Our experiments show that the distortion of the potential landscape by impurities, leading to puddle formation in the narrow gap material, is the major obstacle for observing undisturbed quantum spin Hall edge channel transport.
量子自旋霍尔边缘通道有望成为无耗散的一维导体。然而,理想的量子化电导为 2e^{2}/h 仅在非常短的通道中发现——这与拓扑绝缘体状态对背散射的预期保护相矛盾。在这封信中,我们表明增强带隙并不能提高量子化。当我们通过在栅介质中使用栅极训练对俘获陷阱状态充电来改变势垒景观时,我们在宏观上长的通道中接近电导量子化。实际上,散射长度增加到 175 μm,比之前基于 HgTe 的量子阱的工作长度长一个数量级以上。我们的实验表明,杂质对势垒景观的扭曲导致在窄隙材料中形成液池,是观察未受干扰的量子自旋霍尔边缘通道传输的主要障碍。