Kandrai Konrád, Vancsó Péter, Kukucska Gergő, Koltai János, Baranka György, Kamarás Katalin, Horváth Zsolt E, Vymazalová Anna, Tapasztó Levente, Nemes-Incze Péter
Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary.
ELTE Eötvös Loránd University, Department of Biological Physics, 1117 Budapest, Hungary.
Nano Lett. 2020 Jul 8;20(7):5207-5213. doi: 10.1021/acs.nanolett.0c01499. Epub 2020 Jun 24.
Quantum spin Hall (QSH) insulators host edge states, where the helical locking of spin and momentum suppresses backscattering of charge carriers, promising applications from low-power electronics to quantum computing. A major challenge for applications is the identification of large gap QSH materials, which would enable room temperature dissipationless transport in their edge states. Here we show that the layered mineral jacutingaite (PtHgSe) is a candidate QSH material, realizing the long sought-after Kane-Mele insulator. Using scanning tunneling microscopy, we measure a band gap in excess of 100 meV and identify the hallmark edge states. By calculating the [Formula: see text] invariant, we confirm the topological nature of the gap. Jacutingaite is stable in air, and we demonstrate exfoliation down to at least two layers and show that it can be integrated into heterostructures with other two-dimensional materials. This adds a topological insulator to the 2D quantum material library.
量子自旋霍尔(QSH)绝缘体拥有边缘态,其中自旋和动量的螺旋锁定抑制了电荷载流子的背散射,有望应用于从低功耗电子学到量子计算等领域。应用面临的一个主要挑战是识别大带隙QSH材料,这将使其边缘态能够在室温下实现无耗散传输。在此,我们表明层状矿物贾库廷矿(PtHgSe)是一种候选QSH材料,实现了长期以来备受追寻的凯恩 - 梅勒绝缘体。通过扫描隧道显微镜,我们测量到超过100毫电子伏特的带隙,并识别出标志性的边缘态。通过计算拓扑不变量,我们确认了该带隙的拓扑性质。贾库廷矿在空气中稳定,我们展示了其可剥离至至少两层,并表明它可以与其他二维材料集成到异质结构中。这为二维量子材料库增添了一种拓扑绝缘体。