机器学习在放射学价值网络视角下的质量改进中的应用。
The Application of Machine Learning to Quality Improvement Through the Lens of the Radiology Value Network.
机构信息
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia.
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia.
出版信息
J Am Coll Radiol. 2019 Sep;16(9 Pt B):1254-1258. doi: 10.1016/j.jacr.2019.05.039.
Recent advances in machine learning and artificial intelligence offer promising applications to radiology quality improvement initiatives as they relate to the radiology value network. Coordination within the interlocking web of systems, events, and stakeholders in the radiology value network may be mitigated though standardization, automation, and a focus on workflow efficiency. In this article the authors present applications of these various strategies via use cases for quality improvement projects at different points in the radiology value network. In addition, the authors discuss opportunities for machine-learning applications in data aggregation as opposed to traditional applications in data extraction.
近年来,机器学习和人工智能的发展为与放射科价值网络相关的放射科质量改进计划提供了有前景的应用。通过标准化、自动化和关注工作流程效率,可以减轻放射科价值网络中系统、事件和利益相关者之间相互关联的网络中的协调问题。本文作者通过在放射科价值网络的不同点的质量改进项目的用例,介绍了这些不同策略的应用。此外,作者还讨论了机器学习在数据聚合方面的应用机会,而不是在数据提取方面的传统应用。