MRI Unit, Radiology Department, Health Time, Jaén, Spain.
3D Printing Unit, Engineering Department, Health Time, Jaén, Spain.
J Am Coll Radiol. 2019 Sep;16(9 Pt B):1239-1247. doi: 10.1016/j.jacr.2019.05.047.
Currently, the use of artificial intelligence (AI) in radiology, particularly machine learning (ML), has become a reality in clinical practice. Since the end of the last century, several ML algorithms have been introduced for a wide range of common imaging tasks, not only for diagnostic purposes but also for image acquisition and postprocessing. AI is now recognized to be a driving initiative in every aspect of radiology. There is growing evidence of the advantages of AI in radiology creating seamless imaging workflows for radiologists or even replacing radiologists. Most of the current AI methods have some internal and external disadvantages that are impeding their ultimate implementation in the clinical arena. As such, AI can be considered a portion of a business trying to be introduced in the health care market. For this reason, this review analyzes the current status of AI, and specifically ML, applied to radiology from the scope of strengths, weaknesses, opportunities, and threats (SWOT) analysis.
目前,人工智能(AI)在放射学中的应用,特别是机器学习(ML),已经在临床实践中成为现实。自上世纪末以来,已经引入了多种 ML 算法,用于广泛的常见成像任务,不仅用于诊断目的,还用于图像采集和后处理。AI 现在被认为是放射学各个方面的推动因素。越来越多的证据表明,AI 在放射学中的优势正在为放射科医生创建无缝的成像工作流程,甚至可以取代放射科医生。当前的大多数 AI 方法都存在一些内在和外在的劣势,这阻碍了它们在临床领域的最终实施。因此,AI 可以被认为是一种试图引入医疗保健市场的业务的一部分。基于此,本综述从优势、劣势、机会和威胁(SWOT)分析的角度,分析了当前应用于放射学的 AI,特别是 ML 的现状。
J Am Coll Radiol. 2019-9
Clin Imaging. 2020-9-21
J Am Coll Radiol. 2020-11
Curr Probl Diagn Radiol. 2019
Cardiovasc Intervent Radiol. 2022-3
Can Assoc Radiol J. 2018-4-11
Front Digit Health. 2025-7-24
Diagnostics (Basel). 2025-3-11
Eur J Orthop Surg Traumatol. 2025-3-11
J Med Internet Res. 2025-2-27
Bioengineering (Basel). 2024-9-5