文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能和机器学习在放射学中的应用的优势、劣势、机会和威胁分析。

Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology.

机构信息

MRI Unit, Radiology Department, Health Time, Jaén, Spain.

3D Printing Unit, Engineering Department, Health Time, Jaén, Spain.

出版信息

J Am Coll Radiol. 2019 Sep;16(9 Pt B):1239-1247. doi: 10.1016/j.jacr.2019.05.047.


DOI:10.1016/j.jacr.2019.05.047
PMID:31492401
Abstract

Currently, the use of artificial intelligence (AI) in radiology, particularly machine learning (ML), has become a reality in clinical practice. Since the end of the last century, several ML algorithms have been introduced for a wide range of common imaging tasks, not only for diagnostic purposes but also for image acquisition and postprocessing. AI is now recognized to be a driving initiative in every aspect of radiology. There is growing evidence of the advantages of AI in radiology creating seamless imaging workflows for radiologists or even replacing radiologists. Most of the current AI methods have some internal and external disadvantages that are impeding their ultimate implementation in the clinical arena. As such, AI can be considered a portion of a business trying to be introduced in the health care market. For this reason, this review analyzes the current status of AI, and specifically ML, applied to radiology from the scope of strengths, weaknesses, opportunities, and threats (SWOT) analysis.

摘要

目前,人工智能(AI)在放射学中的应用,特别是机器学习(ML),已经在临床实践中成为现实。自上世纪末以来,已经引入了多种 ML 算法,用于广泛的常见成像任务,不仅用于诊断目的,还用于图像采集和后处理。AI 现在被认为是放射学各个方面的推动因素。越来越多的证据表明,AI 在放射学中的优势正在为放射科医生创建无缝的成像工作流程,甚至可以取代放射科医生。当前的大多数 AI 方法都存在一些内在和外在的劣势,这阻碍了它们在临床领域的最终实施。因此,AI 可以被认为是一种试图引入医疗保健市场的业务的一部分。基于此,本综述从优势、劣势、机会和威胁(SWOT)分析的角度,分析了当前应用于放射学的 AI,特别是 ML 的现状。

相似文献

[1]
Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology.

J Am Coll Radiol. 2019-9

[2]
Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.

J Am Coll Radiol. 2018-2-4

[3]
Artificial Intelligence and Clinical Decision Support for Radiologists and Referring Providers.

J Am Coll Radiol. 2019-9

[4]
The Application of Machine Learning to Quality Improvement Through the Lens of the Radiology Value Network.

J Am Coll Radiol. 2019-9

[5]
Artificial intelligence in stroke imaging: Current and future perspectives.

Clin Imaging. 2020-9-21

[6]
Workflow Applications of Artificial Intelligence in Radiology and an Overview of Available Tools.

J Am Coll Radiol. 2020-11

[7]
Artificial Intelligence and Radiology: A Social Media Perspective.

Curr Probl Diagn Radiol. 2019

[8]
Interventional Radiology ex-machina: impact of Artificial Intelligence on practice.

Radiol Med. 2021-7

[9]
Prime Time for Artificial Intelligence in Interventional Radiology.

Cardiovasc Intervent Radiol. 2022-3

[10]
Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.

Can Assoc Radiol J. 2018-4-11

引用本文的文献

[1]
Artificial intelligence in personalized rehabilitation: current applications and a SWOT analysis.

Front Digit Health. 2025-7-24

[2]
Insights Into the Future: Assessing Medical Students' Artificial Intelligence Readiness - A Cross-Sectional Study at Kerman University of Medical Sciences (2022).

Health Sci Rep. 2025-5-26

[3]
Development of a non-contrast CT-based radiomics nomogram for early prediction of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage.

BMC Med Imaging. 2025-5-23

[4]
AI-Driven Advances in Low-Dose Imaging and Enhancement-A Review.

Diagnostics (Basel). 2025-3-11

[5]
AI classification of knee prostheses from plain radiographs and real-world applications.

Eur J Orthop Surg Traumatol. 2025-3-11

[6]
Future Use of AI in Diagnostic Medicine: 2-Wave Cross-Sectional Survey Study.

J Med Internet Res. 2025-2-27

[7]
Segmentation of the nasopalatine canal and detection of canal furcation status with artificial intelligence on cone-beam computed tomography images.

Oral Radiol. 2025-2-28

[8]
A Methodological Framework for AI-Assisted Diagnosis of Ovarian Masses Using CT and MR Imaging.

J Pers Med. 2025-2-19

[9]
Radiomics in radiology: What the radiologist needs to know about technical aspects and clinical impact.

Radiol Med. 2024-12

[10]
Applications of Artificial Intelligence and Machine Learning in Spine MRI.

Bioengineering (Basel). 2024-9-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索