Max Planck Institute for Evolutionary Biology, 24306 Ploen, Germany; Evolutionary Ecology and Genetics, CAU Kiel, 24118 Kiel, Germany.
UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
Drug Resist Updat. 2019 May;44:100640. doi: 10.1016/j.drup.2019.07.002. Epub 2019 Jul 19.
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
抗生素是用于治疗细菌感染的强效药物。这些药物的不当使用导致了大多数细菌对抗生素耐药性(AR)的传播。铜绿假单胞菌是一种机会性病原体,常涉及环境和难以治疗的医院获得性感染。该物种经常对几种抗生素具有耐药性,被世界卫生组织(WHO)列为优先研究和开发新抗生素的病原体名单中的“关键”类别。除了对几种抗生素具有显著的固有耐药性外,铜绿假单胞菌还可以通过染色体突变和获得 AR 基因来获得耐药性。铜绿假单胞菌拥有最大的细菌基因组之一,并拥有大量通过水平基因转移(HGT)获得的基因,这些基因经常位于整合子和移动遗传元件(MGEs)中,如转座子、插入序列、基因组岛、噬菌体、质粒和整合性和共轭元件(ICEs)。这种基因组多样性导致了非克隆种群结构,由与全球范围内显著发病率和死亡率相关的特定克隆所打断,即所谓的高风险克隆。MGE 的获得会给宿主带来适应性成本,随着时间的推移,MGE-宿主共同进化过程中的补偿突变可以减轻这种成本。尽管质粒和 ICEs 是 AR 的重要驱动因素,但促进这种传播的潜在进化特征仍知之甚少。在这篇综述中,我们全面描述了铜绿假单胞菌中 AR 涉及的主要策略以及该物种中 HGT 的主要驱动因素。讨论了最近开发的基因组工具,这些工具使我们能够更好地理解有助于铜绿假单胞菌成功的特征。
Drug Resist Updat. 2019-7-19
Ann Clin Microbiol Antimicrob. 2016-5-23
Microbiol Spectr. 2021-12-22
Enferm Infecc Microbiol Clin. 2010-1
Int J Antimicrob Agents. 2020-12
Microorganisms. 2025-8-7
Infect Drug Resist. 2025-8-19
JAC Antimicrob Resist. 2025-8-1
Microorganisms. 2025-7-16
Antimicrob Agents Chemother. 2025-9-3
Int J Biomater. 2025-6-10
Front Cell Infect Microbiol. 2025-5-30
Front Cell Infect Microbiol. 2025-5-26