Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
Kymera Therapeutics, Cambridge, MA, 02139, USA.
J Biol Inorg Chem. 2019 Sep;24(6):809-815. doi: 10.1007/s00775-019-01705-x. Epub 2019 Sep 6.
The Saccharomyces cerevisiae transcriptional activator Aft1 and its paralog Aft2 respond to iron deficiency by upregulating expression of proteins required for iron uptake at the plasma membrane, vacuolar iron transport, and mitochondrial iron metabolism, with the net result of mobilizing iron from extracellular sources and intracellular stores. Conversely, when iron levels are sufficient, Aft1 and Aft2 interact with the cytosolic glutaredoxins Grx3 and Grx4 and the BolA protein Bol2, which promote Aft1/2 dissociation from DNA and subsequent export from the nucleus. Previous studies unveiled the molecular mechanism for iron-dependent inhibition of Aft1/2 activity, demonstrating that the [2Fe-2S]-bridged Grx3-Bol2 heterodimer transfers a cluster to Aft2, driving Aft2 dimerization and dissociation from DNA. Here, we provide further insight into the regulation mechanism by investigating the roles of conserved cysteines in Aft2 in iron-sulfur cluster binding and interaction with [2Fe-2S]-Grx3-Bol2. Using size exclusion chromatography and circular dichroism spectroscopy, these studies reveal that both cysteines in the conserved Aft2 Cys-Asp-Cys motif are essential for Aft2 dimerization via [2Fe-2S] cluster binding, while only one cysteine is required for interaction with the [2Fe-2S]-Grx3-Bol2 complex. Taken together, these results provide novel insight into the molecular details of iron-sulfur cluster transfer from Grx3-Bol2 to Aft2 which likely occurs through a ligand exchange mechanism. Loss of either cysteine in the Aft2 iron-sulfur binding site may disrupt this ligand-exchange process leading to the isolation of a trapped Aft2-Grx3-Bol2 intermediate, while the replacement of both cysteines abrogates both the iron-sulfur cluster exchange and the protein-protein interactions between Aft2 and Grx3-Bol2.
酿酒酵母转录激活因子 Aft1 和其同源物 Aft2 通过上调质膜上铁摄取、液泡铁转运和线粒体铁代谢所需蛋白的表达来响应缺铁,其净结果是从细胞外来源和细胞内储存库中动员铁。相反,当铁水平充足时,Aft1 和 Aft2 与胞质谷氧还蛋白 Grx3 和 Grx4 以及 BolA 蛋白 Bol2 相互作用,促进 Aft1/2 与 DNA 解离并随后从核内输出。先前的研究揭示了 Aft1/2 活性的铁依赖性抑制的分子机制,表明 [2Fe-2S] 桥接的 Grx3-Bol2 异二聚体将一个簇转移到 Aft2 上,驱动 Aft2 二聚体化并与 DNA 解离。在这里,我们通过研究 Aft2 中保守半胱氨酸在铁硫簇结合和与 [2Fe-2S]-Grx3-Bol2 相互作用中的作用,进一步深入了解调节机制。使用分子筛层析和圆二色性光谱学,这些研究揭示了保守的 Aft2 Cys-Asp-Cys 模体中的两个半胱氨酸对于通过 [2Fe-2S] 簇结合的 Aft2 二聚化是必不可少的,而只有一个半胱氨酸对于与 [2Fe-2S]-Grx3-Bol2 复合物的相互作用是必需的。总之,这些结果提供了铁硫簇从 Grx3-Bol2 转移到 Aft2 的分子细节的新见解,这可能通过配体交换机制发生。在 Aft2 的铁硫结合位点丢失任一半胱氨酸可能会破坏这种配体交换过程,导致捕获的 Aft2-Grx3-Bol2 中间体的形成,而两个半胱氨酸的替换则会阻断 Aft2 和 Grx3-Bol2 之间的铁硫簇交换和蛋白质-蛋白质相互作用。