Suppr超能文献

基于置信区间的样本量确定公式及层次数据的一些数学性质

Confidence interval-based sample size determination formulas and some mathematical properties for hierarchical data.

机构信息

Department of Education, University of Tokyo, Japan.

出版信息

Br J Math Stat Psychol. 2020 Nov;73 Suppl 1:1-31. doi: 10.1111/bmsp.12181. Epub 2019 Sep 7.

Abstract

The use of hierarchical data (also called multilevel data or clustered data) is common in behavioural and psychological research when data of lower-level units (e.g., students, clients, repeated measures) are nested within clusters or higher-level units (e.g., classes, hospitals, individuals). Over the past 25 years we have seen great advances in methods for computing the sample sizes needed to obtain the desired statistical properties for such data in experimental evaluations. The present research provides closed-form and iterative formulas for sample size determination that can be used to ensure the desired width of confidence intervals for hierarchical data. Formulas are provided for a four-level hierarchical linear model that assumes slope variances and inclusion of covariates under both balanced and unbalanced designs. In addition, we address several mathematical properties relating to sample size determination for hierarchical data via the standard errors of experimental effect estimates. These include the relative impact of several indices (e.g., random intercept or slope variance at each level) on standard errors, asymptotic standard errors, minimum required values at the highest level, and generalized expressions of standard errors for designs with any-level randomization under any number of levels. In particular, information on the minimum required values will help researchers to minimize the risk of conducting experiments that are statistically unlikely to show the presence of an experimental effect.

摘要

在行为和心理研究中,当较低层次的单位(例如,学生、客户、重复测量)嵌套在簇或较高层次的单位(例如,班级、医院、个体)中时,使用层次数据(也称为多级数据或聚类数据)是很常见的。在过去的 25 年中,我们看到了用于计算实验评估中此类数据所需样本量以获得所需统计特性的方法的巨大进步。本研究提供了用于确定样本量的封闭形式和迭代公式,可用于确保层次数据的置信区间具有所需的宽度。为假设平衡和不平衡设计下斜率方差和包含协变量的四级层次线性模型提供了公式。此外,我们还通过实验效果估计的标准误差来解决与层次数据样本量确定有关的几个数学性质。这些性质包括几个指标(例如,每个层次的随机截距或斜率方差)对标准误差、渐近标准误差、最高层次的最小要求值以及具有任意层次随机化的任何数量层次的设计的标准误差的广义表达式的相对影响。特别是,有关最小要求值的信息将帮助研究人员最大限度地降低进行不太可能显示实验效果存在的实验的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验