Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain.
Plant Cell Biotechnology Lab, Instituto de Tecnologia Química e Biológica António Xavier (Green-it Unit), Universidade Nova de Lisboa, Oeiras, Portugal.
J Plant Physiol. 2019 Oct;241:153034. doi: 10.1016/j.jplph.2019.153034. Epub 2019 Aug 27.
Legumes have the capacity to fix nitrogen in symbiosis with soil bacteria known as rhizobia by the formation of root nodules. However, nitrogen fixation is highly sensitive to soil salinity with a concomitant reduction of the plant yield and soil fertilization. Polycationic aliphatic amines known as polyamines (PAs) have been shown to be involved in the response to a variety of stresses in plants including soil salinity. Therefore, the generation of transgenic plants overexpressing genes involved in PA biosynthesis have been proposed as a promising tool to improve salt stress tolerance in plants. In this work we tested whether the modulation of PAs in transgenic Medicago truncatula plants was advantageous for the symbiotic interaction with Sinorhizobium meliloti under salt stress conditions, when compared to wild type plants. Consequently, we characterized the symbiotic response to salt stress of the homozygous M. truncatula plant line L-108, constitutively expressing the oat adc gene, coding for the PA biosynthetic enzyme arginine decarboxylase, involved in PAs biosynthesis. In a nodulation kinetic assay, nodule number incremented in L-108 plants under salt stress. In addition, these plants at vegetative stage showed higher nitrogenase and nodule biomass and, under salt stress, accumulated proline (Pro) and spermine (Spm) in nodules, while in wt plants, the accumulation of glutamic acid (Glu), γ-amino butyric acid (GABA) and 1-aminocyclopropane carboxylic acid (ACC) (the ethylene (ET) precursor) were the metabolites involved in the salt stress response. Therefore, overexpression of oat adc gene favours the symbiotic interaction between plants of M. truncatula L-108 and S. meliloti under salt stress and the accumulation of Pro and Spm, seems to be the molecules involved in salt stress tolerance.
豆科植物通过与土壤中的根瘤菌(rhizobia)形成根瘤来实现共生固氮。然而,氮固定对土壤盐度非常敏感,会导致植物产量和土壤肥力降低。多阳离子脂肪族胺,即多胺(PAs),已被证明参与植物对多种胁迫的反应,包括土壤盐度。因此,过表达参与 PA 生物合成的基因的转基因植物的产生已被提出作为提高植物耐盐性的一种有前途的工具。在这项工作中,我们测试了在盐胁迫条件下,与野生型植物相比,拟南芥中多胺的调节是否有利于与 Sinorhizobium meliloti 的共生相互作用。因此,我们表征了拟南芥 L-108 纯合植株系的共生对盐胁迫的反应,该植株系组成型表达 oat adc 基因,编码参与多胺生物合成的精氨酸脱羧酶。在结瘤动力学测定中,盐胁迫下 L-108 植物的根瘤数增加。此外,这些植物在营养阶段表现出更高的固氮酶和根瘤生物量,并且在盐胁迫下,在根瘤中积累脯氨酸(Pro)和精胺(Spm),而在 wt 植物中,谷氨酸(Glu)、γ-氨基丁酸(GABA)和 1-氨基环丙烷羧酸(ACC)(乙烯(ET)前体)的积累是参与盐胁迫反应的代谢物。因此, oat adc 基因的过表达有利于盐胁迫下拟南芥 L-108 和 S. meliloti 之间的共生相互作用,并且 Pro 和 Spm 的积累似乎是耐盐性的相关分子。