Suppr超能文献

从个体模糊认知图到基于代理的模型:为水资源短缺建模多因素和多利益相关者决策。

From individual Fuzzy Cognitive Maps to Agent Based Models: Modeling multi-factorial and multi-stakeholder decision-making for water scarcity.

机构信息

ITC-Faculty of Geo-Information Science & Earth Observation, University of Twente, P.O. Box 217, 7500AE, Enschede, the Netherlands; Grantham Research Institute on Climate Change and the Environment, London School of Economics and Social Science, Houghton Street, London, WC2A 2AE, United Kingdom.

ITC-Faculty of Geo-Information Science & Earth Observation, University of Twente, P.O. Box 217, 7500AE, Enschede, the Netherlands.

出版信息

J Environ Manage. 2019 Nov 15;250:109482. doi: 10.1016/j.jenvman.2019.109482. Epub 2019 Sep 5.

Abstract

Policy making for complex Social-Ecological Systems (SESs) is a multi-factorial and multi-stakeholder decision making process. Therefore, proper policy simulation in a SES should consider both the complex behavior of the system and the multi-stakeholders' interventions into the system, which requires integrated methodological approaches. In this study, we simulate impacts of policy options on a farming community facing water scarcity in Rafsanjan, Iran, using an integrated modeling methodology combining an Agent Based Model (ABM) with Fuzzy Cognitive Mapping (FCM). First, the behavioral rules of farmers and the causal relations among environmental variables are captured with FCMs that are developed with both qualitative and quantitative data, i.e. farmers' knowledge and empirical data from studies. Then, an ABM is developed to model decisions and actions of farmers and simulate their impacts on overall groundwater use and emigration of farmers in this case study. Finally, the impacts of different policy options are simulated and compared with a baseline scenario. The results suggest that a policy of facilitating farmers' participation in management and control of their groundwater use leads to the highest reduction of groundwater use and would help to secure farmers' activities in Rafsanjan. Our approach covers four main aspects that are crucial for policy simulation in SESs: 1) causal relationships, 2) feedback mechanisms, 3) social-spatial heterogeneity and 4) temporal dynamics. This approach is particularly useful for ex-ante policy options analysis.

摘要

政策制定对于复杂的社会-生态系统(SESs)是一个多因素和多利益相关者的决策过程。因此,SES 中的适当政策模拟应同时考虑系统的复杂行为和利益相关者对系统的干预,这需要综合的方法途径。在本研究中,我们使用结合了基于代理的模型(ABM)和模糊认知图(FCM)的综合建模方法,模拟了政策选择对伊朗拉夫桑詹面临水资源短缺的一个农业社区的影响。首先,使用 FCM 捕获农民的行为规则和环境变量之间的因果关系,这些 FCM 是使用定性和定量数据(即农民的知识和研究中的经验数据)开发的。然后,开发了一个 ABM 来模拟农民的决策和行动,并模拟他们对该案例研究中地下水总使用量和农民移民的影响。最后,模拟了不同政策选择的影响,并与基准情景进行了比较。结果表明,促进农民参与地下水使用管理和控制的政策会导致地下水使用量的最大减少,并有助于确保拉夫桑詹农民的活动安全。我们的方法涵盖了政策模拟在 SESs 中至关重要的四个方面:1)因果关系,2)反馈机制,3)社会-空间异质性和 4)时间动态。这种方法对于事前政策选择分析特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验