School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Sci Total Environ. 2020 Jan 1;698:134165. doi: 10.1016/j.scitotenv.2019.134165. Epub 2019 Aug 27.
Ecosystem water use efficiency (WUE), defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), is an indicator of the tradeoff between carbon assimilation and water loss that is controlled by climate and ecosystem structure. However, how GPP and ET impact WUE remains poorly understood. In this study, we provide a global analysis of WUE trends from 1982 to 2011 using multi-model ensemble mean WUE values derived from seven process-based carbon cycle models and investigate the relative effects of leaf area index (LAI), soil moisture (SM), and vapor pressure deficit (VPD) on GPP and ET. Increasing WUE trend was derived for all models, with an average rate of 0.0057 ± 0.0018 g C·kg HO·yr (p = 0.00), with a spatially increasing WUE across ~84% of the global land area, and increasing trends which are statistically significant over ~72% (p < 0.05). Spatially, GPP primarily dominated WUE variability in humid regions, i.e., boreal Eurasia, eastern America, and the tropics, whereas ET dominated WUE variability in dryland regions, i.e., northeast China, the Middle East, southern South America, and South Australia. Soil moisture is likely the most influential factor on GPP and ET variations, with ~63% and ~61% of the global land area dominated by SM, and therefore WUE, for GPP and ET respectively from 1982 to 2011. Our findings enrich the understanding of WUE trends and provide direct evidence for SM-induced variability in WUE.
生态系统水分利用效率(WUE)定义为总初级生产力(GPP)与蒸散(ET)的比值,是衡量碳同化与水分损失之间权衡关系的指标,受气候和生态系统结构控制。然而,GPP 和 ET 如何影响 WUE 仍不清楚。本研究利用 7 个基于过程的碳循环模型得出的多模型集合平均 WUE 值,对 1982 年至 2011 年期间的 WUE 趋势进行了全球分析,并研究了叶面积指数(LAI)、土壤湿度(SM)和水汽压亏缺(VPD)对 GPP 和 ET 的相对影响。所有模型均得出 WUE 呈上升趋势,平均增长率为 0.0057 ± 0.0018 g C·kg HO·yr(p = 0.00),全球约 84%的陆地面积的 WUE 呈增加趋势,且约 72%(p < 0.05)的地区呈显著上升趋势。从空间上看,在湿润地区,如欧亚大陆北部、美洲东部和热带地区,GPP 主要控制着 WUE 的变化;而在干旱地区,如中国东北、中东、南美南部和澳大利亚南部,ET 主要控制着 WUE 的变化。土壤湿度可能是影响 GPP 和 ET 变化的最主要因素,1982 年至 2011 年间,全球约 63%和 61%的陆地面积分别由 SM 主导 GPP 和 ET,因此也主导着 WUE。本研究结果丰富了对 WUE 趋势的认识,并为 SM 引起的 WUE 变化提供了直接证据。