Suppr超能文献

二维疏水-极性模型中蛋白质结构预测的有效混合方法。

Effective hybrid approach for protein structure prediction in a two-dimensional Hydrophobic-Polar model.

机构信息

Department of Electronic Engineering, National Kaohsiung University of Science and Technology, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City, 84001, Taiwan; Program in Biomedical Engineering, Kaohsiung Medical University, No.100, Tzyou 1st Rd., Sanmin Dist., Kaohsiung City, 80756, Taiwan.

Department of Electronic Engineering, National Kaohsiung University of Science and Technology, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City, 84001, Taiwan.

出版信息

Comput Biol Med. 2019 Oct;113:103397. doi: 10.1016/j.compbiomed.2019.103397. Epub 2019 Aug 20.

Abstract

Hydrophobic-polar (HP) models are widely used to predict protein folding and hydrophobic interactions. Numerous optimization algorithms have been proposed to predict protein folding using the two-dimensional (2D) HP model. However, to obtain an optimal protein structure from the 2D HP model remains challenging. In this study, an algorithm integrating particle swarm optimization (PSO) and Tabu search (TS), named PSO-TS, was proposed to predict protein structures based on the 2D HP model. TS can help PSO to avoid getting trapped in a local optima and thus to remove the limitation of PSO in predicting protein folding by the 2D HP model. In this study, a total of 28 protein sequences were used to evaluate the accuracy of PSO-TS in protein folding prediction. The proposed PSO-TS method was compared with 15 other approaches for predicting short and long protein sequences. Experimental results demonstrated that PSO-TS provides a highly accurate, reproducible, and stabile prediction ability for the protein folding by the 2D HP model.

摘要

疏水 - 极性 (HP) 模型被广泛用于预测蛋白质折叠和疏水相互作用。已经提出了许多优化算法来使用二维 (2D) HP 模型预测蛋白质折叠。然而,从 2D HP 模型中获得最佳蛋白质结构仍然具有挑战性。在这项研究中,提出了一种集成粒子群优化 (PSO) 和禁忌搜索 (TS) 的算法,称为 PSO-TS,用于基于 2D HP 模型预测蛋白质结构。TS 可以帮助 PSO 避免陷入局部最优解,从而消除 PSO 在预测蛋白质折叠方面的 2D HP 模型的局限性。在这项研究中,总共使用了 28 个蛋白质序列来评估 PSO-TS 在蛋白质折叠预测中的准确性。将所提出的 PSO-TS 方法与其他 15 种用于预测短序列和长序列的方法进行了比较。实验结果表明,PSO-TS 为 2D HP 模型的蛋白质折叠提供了高度准确、可重复和稳定的预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验