IEEE Trans Cybern. 2021 Mar;51(3):1403-1416. doi: 10.1109/TCYB.2019.2936001. Epub 2021 Feb 17.
Evolving production scheduling heuristics is a challenging task because of the dynamic and complex production environments and the interdependency of multiple scheduling decisions. Different genetic programming (GP) methods have been developed for this task and achieved very encouraging results. However, these methods usually have trouble in discovering powerful and compact heuristics, especially for difficult problems. Moreover, there is no systematic approach for the decision makers to intervene and embed their knowledge and preferences in the evolutionary process. This article develops a novel people-centric evolutionary system for dynamic production scheduling. The two key components of the system are a new mapping technique to incrementally monitor the evolutionary process and a new adaptive surrogate model to improve the efficiency of GP. The experimental results with dynamic flexible job shop scheduling show that the proposed system outperforms the existing algorithms for evolving scheduling heuristics in terms of scheduling performance and heuristic sizes. The new system also allows the decision makers to interact on the fly and guide the evolution toward the desired solutions.
进化生产调度启发式是一项具有挑战性的任务,因为生产环境是动态和复杂的,并且多个调度决策是相互依存的。为此任务已经开发了不同的遗传编程 (GP) 方法,并取得了非常令人鼓舞的结果。然而,这些方法通常难以发现强大且紧凑的启发式算法,尤其是对于困难的问题。此外,决策者没有系统的方法来干预并将他们的知识和偏好嵌入到进化过程中。本文为动态生产调度开发了一种新颖的以人为中心的进化系统。该系统的两个关键组成部分是一种新的映射技术,用于逐步监控进化过程,以及一种新的自适应代理模型,以提高 GP 的效率。使用动态灵活作业车间调度的实验结果表明,在所提出的系统中,在调度性能和启发式大小方面,它优于用于进化调度启发式的现有算法。新系统还允许决策者实时交互,并引导进化朝着期望的解决方案发展。